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A dynamical approach to quasi analytic

type problems
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Abstract: In this paper we give an alternative proof for a vanishing result about flat functions proved in
G.Stoica, ”When must a flat function be identically zero”, The American Mathematical Monthly 125(7)648-
649, 2018. With a dynamical approach we give a generalization of this result to multidimensional variables.
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1 Introduction

Let M = (mk) be a sequence of positive real numbers. We consider the class C({mn}) of all smooth
functions on an interval [a, b] such that for all x ∈ [a, b] we have |f (n)(x)| ≤ bn.mn where b is a constant
which depends on f . A class C({mn}) of smooth functions is called a quasi analytic class if for every f ∈
C({mn}) if f (n)(a) = 0, n = 0, 1, 2, . . . at some point a then f must be identically 0 on [a, b]. This concept
generates several results including Denjoy-Carlman theorem. See [1, 2]. This theory was a motivation for [5]
to consider the following question: Under what functional differential inquality imposed on a flat function
f and its derivative can one conclude that f identically vanish?. So this is an strong motivation to extend
the concept of quasi analytic functions via consideration of various functional differential inequalities. In
this direction George Stoica proved the following interesting result in [5]:

Theorem 1. Let f be a C1 real-valued function on [0, 1], infinitely differentiable at x = 0, and such that
f (n)(0) = 0, ∀n ∈ N ∪ {0}. If |xf ′(x)| ≤ C|f(x)| for some C > 0 and every x ∈ [0, 1], then f(x) = 0 for
every x ∈ [0, 1].

In [4] the author gives a simplified proof for the above theorem.

In this paper, apart from giving an alternative proof for this theorem, we observe that there is a
dynamical nature for the formulation of this theorem. The method of proof of the following theorem,
which generalizes 1 to the multdimensional variables, represents this dynamical feature.

Theorem 2. Assume that U is a disc around the origin 0 ∈ Rn. Let h : U → Rn with h = (h1, h2, . . . , hn)
be a C1 map with the inner product condition ⟨h(x), x⟩ > 0, ∀x ∈ U \ {0}. We further assume that all
eigenvalues of the Jacobian matrix Jh(0) have positive real part. Assume that f : U → R be a C1 function
which is flat at 0. If we have |

∑n
i=1 hi∂f/∂xi| ≤ c|f(x| for some constant c then f is identically 0 on U .
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Example. Put x = (x1, x2, . . . xn) ∈ Rn. Let f : Rn → R be a smooth function which is flat at 0. Assume
that |

∑n
i=1 xi

∂f
∂xi

| ≤ c|x|. Then f(x) = 0, ∀x ∈ Rn. To prove this fact we apply 2 to h(x) = x. The

Jacobian matrix Jh = In whose only eigenvalue is 1. Moreover ⟨h(x), x⟩ > 0 ∀x ̸= 0.

2 Backgrounds from Dynamics and Proofs of the main The-
orems

In this section we first recall the Gronwal inequality and flat functions. Then we provide necessary defini-
tions from the theory of differential equations and dynamical systems.

Gronwal Inequality. Let β and u be real-valued continuous functions defined on an interval [a, b]. If u
is differentiable in (a, b) and satisfies the differential inequality u′(t) ≤ β(t)u(t). ∀t ∈ [a, b] then u(t) ≤
u(a) exp

∫ t

a
β(s)ds for all t ∈ [a, b].

Let f be a real valued function defined in a neighborhood of 0 ∈ R. We say that f is a flat function at
the origin if f (n)(0) = 0, ∀n ∈ N ∪ {0}. Its multivariable version is the following:
Assume that U is an open subset of Rn containing 0. A C1 function f : U → R is called a flat function at
the origin, if f(0) = 0 and all its partial derivatives at 0 exist and vanishes. Namely ∂mf

∂x
p
i ∂x

q
j
(0) = 0, ∀m ∈

N; , 1 ≤ i, i ≤ n p+ q = m. This is equivalent to say that f is infinitely differentiable at the origin and

lim
x→0

|f(x)|
|x|k = 0 ∀k ∈ N (2.1)

Now we shall justify the dynamical nature of Theorem 1. First we introduce some dynamical prelimi-
naries which can be found in [3] :

Let U be an open subset of Rn andX : U → Rn be a vector field withX = (P1, P2, . . . Pn). By existence
and uniqueness theorem of the theory of ordinary differential equations we get a flow ϕt associated to
solution curves of

x′ = X(x) (2.2)

namely ϕt(x) is the solution curve of (2.2) staring at point x, See[3, Chapter 8]. The maximal interval of
solution starting at x, denoted by I(x), is the maximal interval around t = 0 where the solution ϕt(x) can
be defined on I(x). The orbit of a point x is defined as

O(x) = {ϕt(x) | t ∈ I(x)}

The positive and negative semi orbits O± defined as

{ϕt(x) | t ∈ I(x), and t ≥ 0(t ≤ 0, resp.}

A singularity of X is a point a ∈ U with X(a) = 0. A singularity a of X is called a hyperbolic sink (source,
resp.) if all eigenvalues of JX(a), the Jacobian matrix of X at a, have negative(positive, resp.) real part.
The following theorem about hyperbolic sinks and source plays a crucial role in our paper. Its proof can
be found in [3]:

Theorem 3. Let a ∈ U be a sink of equation ẋ = X(x) with flow ϕt. Then there exist an open set V ⊂ U
containing a and constant θ > 0, ;λ > 0 such that |ϕt(x)− a| ≤ θe−λt|x− a|, ∀x ∈ V, ∀t > 0
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Let X = (P1, P2, . . . Pn) be a vector field on an open set U ⊂ Rn. Assume that f : U → R is a C1

function. We define X.f =
∑n

i=1 Pi∂f/∂xi. Then X.f is the derivation of f along solution curves of X.
Namely
X.f(z) = d

dt
(f ◦ ϕt(z))|t=0. The linear operator D with D(f) = X.f is called ”Derivational operator

associated to X ”.

Assume that a vector field X has a singularity at a point a. Assume that a function f is defined in a
neighborhood of a with a local minimum at point a. We say that f is a Liapunov function for X if X.f < 0
in a deleted neighborhood of a. Existence of Liapunov functions around a singularity a implies that all
solution curves ϕt(x) starting points x in a small neighborhoods of a tends to a as t goes to infinity. This
concept is called stability. See [3, Chapter 9].

Remark 1. With these notations we provided so far, the theorem 1 can be read in the following dynamical
language:

Let X be the vector field X(x) = x. Assume that f is a flat function at the origin. Then

if |X.f(x)| ≤ C|f(x)| for some constant C then f vanishes identically.

So it is natural to consider a dynamical nature for 1. Such a consideration enabled us to generalize this
theorem to higher dimensional case.

Now we shall provide a new proof for the result in [5].

An Alternative Proof for Theorem 1. On the contrary, assume that f is not identically zero. Then
there exist a right isolated zero for f . This means that there exist a point x0 ∈ [0, 1) with f(x0) = 0 such
that

f(x) ̸= 0 ∀x ∈ (x0, x0 + δ] (2.3)

for some δ > 0. Without lose of generality we may assume that f is positive on the open interval (x0, x0+δ],
otherwise we replace f by −f . First assume that x0 ̸= 0. We define u(t) = f(x0e

t) for t ∈ [0, ϵ) where
ϵ = ln x0+δ

x0
. Now we differentiate u(t) and apply the assumption |xf ′(x)| ≤ C|f(x)| of theorem 1. Then

we have

u′(t) = x0e
tf ′(x0e

t) ≤ |x0etf ′(x0e
t)|

≤ C|f(x0et)| = Cf(x0e
t) = Cu(t)

(2.4)

By Gronwal inequality we get 0 ≤ u(t) ≤ u(0)ect = 0. This means that f vanishes in a right neighbor-
hood of x0. This contradicts to the assumption (2.3).

Now assume that x0 = 0. So f does not vanish on (0, δ]. For every fixed x ∈ (0, δ) we define u(t) =
f(xet), t ∈ [0, ln δ

x
]. We apply again the Gronwal inequality to (2.4) so we obtain f(xet) ≤ f(x)eCt, ∀t ∈

[0, δ
x
]. We substitute t = δ

x
in the latter inequality so we have 0 < f(δ) ≤ f(x)

(
δ
x

)C ⇒ f(x) >
(

f(δ)
δ

)C

xC .

This obviously contradicts with flatness of f at the origin. This completes the proof of Theorem 1.

Our proof of the above theorem can be generalized to higher dimensions. This generalization is given
in the proof of 2 as follows:

Proof of theorem 2. The method of proof is based on usage of 3 and also on the same method we used
in the proof of 1. We apply the same method to a given typical orbit or semi orbit O(p) or O±(p) of the
vector field h or its negative direction Y = −h. The vector field h has a source at the origin hence the
vector field Y = −h has a sink at 0. We denote by ϕt, ψt the flow of Y and h respectively. Obviously
ψt(x) = ϕ−t(x). For every p ∈ U, limt→+∞ ϕt(p) = 0 since

Y.(x21 + x22 + . . .+ x2n) = −h.(x21 + x22 + . . .+ x2n) = −2⟨h(x).x⟩ < 0
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when x = (x1, x2, . . . , xn) ∈ U \ {0}. So the function (x21 + x22 + . . . + x2n) is strictly decreasing along the
solution curves of Y . In the other words the function (x21 + x22 + . . .+ x2n) is a Lyapunov function for the
vector field Y . To prove 2 we assume on the contrary that there exist a point p ∈ U with f(p) ̸= 0. Since
Y has a sink at origin which attracts all solution curves of disc U , the maximal interval of solution I(p)
associated to vector field h = −Y is in the form

I(x) = (−∞, ω(x)) (2.5)

. We define a function u(t) : I(x) → R with u(t) = f ◦ ψt(p). So u is not identically zero. Furthermore
the condition |

∑n
i=1 hi∂f/∂xi| ≤ c|f(x|) implies that u satisfies u′(t) ≤ cu(t). So one of the following two

situations may occur:

1. There exist a right isolated root t0 for u. This means that there exist a point t0 ∈ I(x) with u(t0) = 0
but u does not vanish on a right neighborhood (t0, t0 + δ)

2. The function u does not vanish on an interval (−∞,m) for some m < 0

The first 1 leads us to contradiction by Gronwal inequality. the function u(t) satisfies u(t) ≤ ectu(t0) = 0
which contradict to non vanishing assumption on (t0, t0 + δ). Note that a similar argument worked in the
proof of 1. We consider the second 2. According to 3 there exist a neighborhood V around the origin and
positive constants θ, λ such that |ϕt(x)| ≤ θeλt|x|, ∀x ∈ V, ∀t > 0. We fix a point q ∈ O−(p) which
belongs V . For every x = ϕt(q), t > 0 we shall apply the Gronwal inequality to function w(s) = f(ψs(x))
defined on [0, t]. Again the assumptions of 2 imply that dw/ds = ẇ ≤ cw hence w(s) ≤ ecsw(0). So we
have

f(q) = w(t) ≤ ectw(0) = ectf(ϕt(q)) ⇒

f(q)

(
|ϕt(q)|
|q|

)c/λ

≤ f(q)(e−λt)
c/λ ≤ f(q)e−ct ≤ f(ϕt(q))

So we obtain
k|ϕt(p)|c/λ ≤ f(ϕt(p)) ∀t > 0

where the constant k is k = f(q)

|q|c/λ Thanks to the equivalent formulation of flatness property (2.1) this

contradicts to the fact that f is flat at origin since ϕt(q) tends to the hyperbolic sink 0 as t goes to −∞.
This completes the proof of 3.

3 Discussions and further Reseaches

In this paper we presented a differential operator interpretation for the assumption |xf ′(x)| ≤ c|f(x)|
in[5]. We considered the differential operator D(f) = xf ′(x) so we translated the main problem as follows:
Every flat function f with |D(f)(x)| ≤ c|f(x)| must be vanished identically. This situation leads us to the
following definition and questions:

let D be a differential operator which acts on the space of all smooth functions on Rn or any arbitrary
manifold. We say that D is a G.S. operator at point p if for every flat function locally defined around p
which satisfies |D(f)(x)| ≤ c|f(x)| then f must vanish identically in a neighborhood around p. We learn
from [5] that the differential operator D(f) = xf ′(x) is a G.S. operator at origin. Moreover we prove in
this paper that the operator D(f) =

∑n
i=1 Pi(∂f/∂xi) is a multidimensional G.S. operator at the origin if

0 is a hyperbolic sink(or source) for the vector field X = (P1, P2, . . . , Pn). These situations suggest some
proposals as follows:
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• Introducing more examples of G.S. differential operators and a possible classification of all such kind
of operators

• Consideration of the previous proposal for the particular operator ∆, the Laplace operator on a
Riemannian manifold. Determination of all Riemannian manifold M for which the Laplacian is a
G.S. operator at all points. On the opposite extreme one can think to classification of all Riemannian
manifold M for which the operator ∆ is a G.S. operator at no point of M

• To a vector field X with corresponding differential operator D(f) = X.f , we associate the set of all
points p such that D is a G.S. operator at p. So it would be interesting to study this set from a
dynamical point of view.

Apart from the above geometric proposals arising from the concept introduced in [5], in the following
remark we present a different question with a functional analysis nature:

Remark 2. The assumption |D(f)(x)| ≤ c|f(x)| is suggesting a concept stronger than usual boundedness
of operator D when we consider the sup norm on an appropriate function space. So this is a motivation
to ask the following question when we reduce this strong continuity to the standard boundedness of D;

Let V = {f ∈ C∞[0, 1] | f is flat at 0}. We equip V with the norm | |∞. Is there an infinite
dimensional subspace W ⊂ V which is invariant under D(f) = xf ′(x) and D is a bounded operator on W?

We observe that the concept of quasi analytic function was the main motivation for consideration of
the differential inequality |xf ′(x)| ≤ c|x| in [5]. The classical concept of quasi analytic functions involves
a countable functional inequalities. So a general and natural question is the following:

Question. Can we study a typical quasi analytic class of functions via a unique functional differential
inequality? If there are some partial affirmative answer to this question, according to existence of various
dynamical interpretations for a functional differential inequality, we ask the next question: Is it reasonable
and promising to follow some dynamical approaches to classical quasi analytic problems?
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