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Frame and G-frame in Hilbert spaces
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Abstract: In this paper, we investigate frames and g-frames and show that constructs the direct sum
of frames for a finite number of frames. also, We show under what condition it becomes g-frames to
T ∗−g-frames. Finally, we generalize Sun ’s theorem to Parseval frames.
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1 Introduction

Frames for Hilbert spaces were first introduced by Duffin and Shaeffer [10] in 1952 to study some
problems in nonharmonic Fourier series, reintroduced in 1986 by Daubechies et al. and popularized from
then in [1, 2, 9, 10]. Frames are generalizations of bases in Hilbert spaces, a frame as well as an orthonormal
basis allows each element in the underlying Hilbert space to be written as an unconditionally convergent
series in linear combinations of the frame elements, however, in contrast to the situation for a basis, the
coefficients might not be unique. Frames are very useful in characterization of function spaces and other
fields of applications such as filter bank theory, sigma-delta quantization, signal and image processing and
wireless communication, see[3, 14, 7, 11, 13].
Nowadays, frame theory is a standard notion in applied mathematics, computer science and engineering,
but technical advances and massive amounts of data which cannot be handled with a single processing
system have increased the demand for the extensions of frame e.g, fusion frames, g-frames, weaving frames,
etc. [2, 6, 13]. Fusion frames are generalized frames and were introduced in [13]. Fusion frames have
important applications e.g. in distributed processing, sensor networks and packet encoding. Over the
years, various extensions of the frame theory have been investigated, several of them were contained in the
elegant theory of g-frames. Sun [15] introduced g-frames as another generalized frames. He showed that
obliqe frames, pseudo-frames and fusion frames are especial cases of g-frames. Some authors call it the
operator-valued frame. Kaftal et.al developed operator theoretic method for dealing with multiwavelets
and multiframes, see[1, 3, 15]. Throughout this paper, H denotes a separable Hilbert space with inner
product ⟨., .⟩ and I is a finite or countable subset of Z, and {Hi : i ∈ I} is a sequence of separable Hilbert
spaces. Also, for every i ∈ I,B(H,Hi) is the set of all bounded linear operators from H to Hi, and B(H,H)
is denoted by B(H).
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Definition 1.1. A family of vectors {fi}i∈I in a Hilbert space H is said to be a frame if there are constants
0 < A ≤ B < ∞ such that, for every f ∈ H,

A ∥ f ∥2≤
∑
i∈I

|⟨f, fi⟩|2 ≤ B ∥ f ∥2,

where A and B are lower frame bound and upper frame bound, respectively.
A frame is called a tight frame if A = B, and is called a Parseval frame if A = B = 1. If a sequence
{fi}i∈I satisfies the upper bound condition, then {fi}i∈I is called a Bessel sequence.

Remark 1.2. Let {fi}i∈I be a Bessel sequence in a Hilbert space H. Then

T : ℓ2(I) 7−→ H, T (ci)i∈I :=
∑
i∈I

cifi

defines a bounded linear operator. The adjoint operator is given by

T ∗ : H 7−→ ℓ2(I), T ∗f = ⟨f, fi⟩i∈I .

Furthermore, ∑
i∈I

|⟨f, fi⟩|2 ≤∥ T ∥2∥ f ∥2, (f ∈ H).

We call the adjoint of the synthesis operator, the analysis operator.

Composing T with its adjoint T ∗, we obtain the frame operator

S : H 7−→ H, Sf = TT ∗f =
∑
i∈I

⟨f, fi⟩fi.

Note that in terms of the frame operator,

⟨Sf, f⟩ =
∑
i∈I

|⟨f, fi⟩|2 (f ∈ H).

Theorem 1.3. Let {fi}i∈I be a frame for H with frame operator S. Then the following hold:
(i)S is invertible and self- adjoint.
(ii) Every f ∈ H can be represented as

f =
∑
i∈I

⟨f, S−1fi⟩fi =
∑
i∈I

⟨f, fi⟩S−1fi.

Proof. Ref [7].

Note that because S : H 7−→ H is bijective, the sequence {S−1fi}i∈I is also a frame. It is called the
canonical dual frame of {fi}i∈I .

Example 1.4. Let {ei}2i=1 be an orthonormal basis for a two-dimensional vector space H with the inner
product. Let

f1 = 2e2, f2 = 3e1, f3 = 2e1 + 3e2.

For every f ∈ R2,

4 ∥ f ∥2≤
∑
i∈I

|⟨f, fi⟩|2 ≤ 22 ∥ f ∥2,
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Then {fi}3i=1 is a frame for H. Using the definition of the frame operator,

Sf =
3∑

i=1

⟨f, fi⟩fi,

we obtain that
Se1 = 13e1 + 6e2, Se2 = 6e1 + 13e2.

Thus,

S−1e1 =
26

133
e1 −

12

133
e2, S−1e2 =

6

133
e1 +

13

133
e2.

By linearity, the canonical dual frame is

{S−1fi}3i=1 = { 12

133
e1 +

26

133
e2,

78

133
e1 −

36

133
e2,

70

133
e1 −

15

133
e2}.

Theorem 1.5. Let {fi : i ∈ I} be a frame for H and Λ ∈ B(H) be invertible. Then {Λfi : i ∈ I} is a
frame for H.

Proof. Ref [7].

Corollary 1.6. Let {fi : i ∈ I} be a Bessel sequence for H and Λ ∈ B(H) be surjective. Then {Λfi : i ∈ I}
is a frame for H.

Remark 1.7. Let H and K be two Hilbert spaces. We recall that H
⊕

K := {(f, g) : f ∈ H, g ∈ K} is a
Hilbert space with Pointwise operations and inner product

⟨(f, g), (f
′
, g

′
)⟩ = ⟨f, f

′
⟩H + ⟨g, g

′
⟩K (f, f

′
ϵH, g, g

′
ϵK).

Also, if Λ ∈ B(H,V ),Γ ∈ B(K,Y ) then for each f ∈ H, g ∈ K we define

Λ⊕ Γ ∈ B(H ⊕K,V ⊕ Y ) by (Λ⊕ Γ)(f, g) := (Λf,Γg).

Theorem 1.8. Let {fi : i ∈ I} be a frame with bounds A,B let {gj : j ∈ J} be a frame with bounds C,D
. Then {fi ⊕ gj ∈ H ⊕K : (i, j) ∈ I × J} is a frame. Furthermore, if Sf , Sg and Sf⊕g are frame operators
respectively, then we have Sf⊕g = Sf ⊕ Sg.

Proof. Let {fi : i ∈ I} and {gj : j ∈ J} be frames for H and K, respectively. Since A,B and C,D are
their bounds respectively. Then for every f ⊕ g ∈ H ⊕K we have

A ∥ f ∥2≤
∑
i∈I

|⟨f, fi⟩|2 ≤ B ∥ f ∥2,

C ∥ g ∥2≤
∑
j∈J

|⟨g, gi⟩|2 ≤ D ∥ g ∥2 .

Hence
min{A,C} ∥ f ⊕ g ∥2= min{A,C}(∥ f ∥2 + ∥ g ∥2) ≤∑

(i,j)∈I×J

|⟨(f, g), (fi, gj)⟩|2 =
∑

(i,j)∈I×J

|⟨f, fi⟩+ ⟨fi, gi⟩|2

≤ max{B,D} ∥ f ⊕ g ∥2 .

Therefore {fi ⊕ gj ∈ H ⊕K : (i, j) ∈ I × J} is frame and moreover,

Sf⊕g(f, g) =
∑

(i,j)∈I×J

⟨(f, g), (fi, gi)⟩(fi, gi) =
∑

(i,j)∈I×J

(⟨f, fi⟩H + ⟨g, gi⟩K)(fi, gi)

= Sf (f)⊕ Sg(g) = (Sf ⊕ Sg)(f ⊕ g).

Therefore Sf⊕g = Sf + Sg.
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2 G-frame

We observe that various generalizations of frames have been proposed recently. For example, bounded
quasi-projectors , frames of subspaces, pseudo-frames, oblique frames, and outer frames [2, 13, 14, 15]. All
of these generalizations are proved to be useful in many applications. Here we point out that they can be
regarded as special cases of g-frames and many basic properties can be derived within this more general
context.

Definition 2.1. We call a sequence Λ = {Λi ∈ B(H,Hi) : i ∈ I} a generalized frame, or simply a g-frame,
for H with respect to {Hi : i ∈ I} if there are two positive constants A and B such that

A ∥ f ∥2≤
∑
i∈I

∥ Λif ∥2≤ B ∥ f ∥2 (f ∈ H).

We call A and B the lower and upper frame bounds, respectively. We call {Λi : i ∈ I} a tight g-frame if
A = B and a Parseval g-frame if A = B = 1.
If only the right-hand side inequality is required, Λ is a g-Bessel sequence.
If Λ is s g-Bessel sequence, then the synthesis operator for Λ is the linear operator,

TΛ : (
∑
i∈I

⊕Hi)ℓ2 7−→ H TΛ(fi)i∈I =
∑
i∈I

Λ∗
i fi.

We call the adjoint of the synthesis operator, the analysis operator. The analysis operator is the linear
operator,

T ∗
Λ : H 7−→ (

∑
i∈I

⊕Hi)ℓ2 T ∗
Λf = (Λif)i∈I .

We call SΛ = TΛT
∗
Λ the g-frame operator of Λ and SΛf =

∑
i∈I Λ

∗
iΛif, (f ∈ H), for more details see

[11, 15].

Theorem 2.2. A frame is equivalent to a g-frame whenever Hi = C, i ∈ I.

Proof. Ref [15].

Definition 2.3. Let T ∈ B(H) and {Λi ∈ B(H,Hi) : i ∈ I} be a g-frame. We say {Λi}i∈I is a T-g-frame
if there exist 0 < A ≤ B < ∞ such that

A ∥ T ∗f ∥2≤
∑

i∈I ∥ Λif ∥2≤ B ∥ f ∥2 (f ∈ H).

Theorem 2.4. Let {Λi ∈ B(H,Hi) : i ∈ I} be a g-frame for H w.r.t {Hi : i ∈ I}. Suppose that
Ti ∈ B(Hi, Zi) and these exist m,M > 0, such that for each i ∈ I, xi ∈ Hi

m∥xi∥ ≤ ∥Tixi∥ ≤ M∥xi∥,

where each Zi is a Hilbert space and T ∈ B(H). Then
(i) {TiΛiT ∈ B(H,Zi) : i ∈ I}, is a T ∗-g-frame.
(ii) If T is invertible, then {TiΛiT ∈ B(H,Zi) : i ∈ I}, is a g-frame.

Proof. Let {Λi ∈ B(H,Hi) : i ∈ I}, be a g-frame with bounds A,B. Then for each f ∈ H,T ∈ B(H), we
have ∑

i∈I

∥ TiΛiTf ∥2≤
∑
i∈I

M2 ∥ ΛiTf ∥2≤ M2B ∥ Tf ∥2

≤ M2B ∥ T ∥2∥ f ∥2 .
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For lower bound, we have ∑
i∈I

∥ TiΛiTf ∥2≥
∑
i∈I

m2 ∥ ΛiTf ∥2≥ m2A ∥ Tf ∥2=

m2A ∥ (T ∗)∗f ∥2 .

(ii) If T is invertible operator for each f ∈ H, we have

∥ f ∥2=∥ T−1Tf ∥2≤∥ T−1 ∥2∥ Tf ∥2≤ 1

A
∥ T−1 ∥2

∑
i∈I

∥ TiΛif ∥2

≤ 1

Am2
∥ T−1 ∥2

∑
i∈I

∥ TiΛiTf ∥2 .

Therefore
Am2 ∥ T−1 ∥−2∥ f ∥2≤∥ T−1 ∥2

∑
i∈I

∥ TiΛiTf ∥2 .

And hence (ii) is proved.

Corollary 2.5. Let {Λi ∈ B(H,Hi) : i ∈ I} be a g-frame and S be the g-frame operator. Then {ΛiS
− 1

2 :
i ∈ I}. is a g-frame.

Definition 2.6. A sequence {Λi ∈ B(H,Hi) : i ∈ I} is called
(1) g-complete, if {f : Λif = 0, i ∈ I} = {0}.
(2) A g-Riesz basis for H with respect to {Hi}i∈I , if {Λi ∈ B(H,Hi) : i ∈ I} is g-complete and there exist
two positive constants A and B such that for any finite subset J ⊆ I and gj ∈ Ki

A
∑
j∈J

∥ gj ∥2≤∥
∑
j∈J

Λ∗
jgj ∥2≤ B

∑
j∈J

∥ gj ∥2 .

(3) A near g-Riesz basis, if there exists a finite subset σ of I for which {Λi}i∈I\σ is a g-Riesz basis for H
with respect to {Hi}i∈I\σ.

Now we generalize Sun ,s theorem [15, Theorem3.1] to Parseval frames.

Theorem 2.7. Let {Λi ∈ B(H,Hi) : i ∈ I} and for each i ∈ I , {fij : j ∈ Ji} be a Parseval frame for Ki.
Then :
(i) {Λi : i ∈ I} is a g-frame in H w.r.t {Hi : i ∈ I} ( g-Bessel sequence) if and only if {(Λi)

∗(fij) : i ∈
I, j ∈ Ji} is a frame in H ( Bessel sequence ).
(ii) If {(Λi)

∗(fij) : i ∈ I, j ∈ Ji} is a Riesz basis, then {Λi : i ∈ I} is a g-Riesz basis. Conversely if
{Λi : i ∈ I} is a g-Riesz basis and there exists m > 0 such that for each i ∈ I1 and (cij)j∈I1 for each finite
I1 ⊆ Ji,

m(
∑
j∈I1

|cij |2)
1
2 ≤ ∥

∑
j∈I1

cijfij∥,

then {(Λi)
∗(fij) : i ∈ I, j ∈ Ji} is a Riesz basis.

Proof. (i) For every f ∈ H, i ∈ I, Λif ∈ Ki and we have

∥ Λi(f) ∥2=
∑
j∈Ji

|⟨Λi(f), fij⟩|2 =
∑
j∈Ji

|⟨f,Λ∗
i (fij)⟩|2.
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Therefore {Λi : i ∈ I} is a g-frame if and only if {(Λi)
∗(fij) : i ∈ I, j ∈ Ji} is a frame.

(ii) Let {(Λi)
∗(fij) : i ∈ I, j ∈ Ji} is a Riesz basis with bounds A and B. For each gi ∈ Ki we have

gi =
∑

j∈Ji
⟨gi, fij⟩fij and ∥ gi ∥2=

∑
j∈Ji

|⟨gi, fij⟩|2.
Moreover Λ∗

i (gi) =
∑

j∈Ji
⟨gi, fij⟩Λ∗

i (fij) and consequently

A
∑
i∈I

∥ gi ∥2= A
∑
i∈I

∑
j∈Ji

| < gi, fij > |2 ≤∥
∑
i∈I

∑
j∈Ji

< gi, fij > Λ∗
i (fij) ∥2

=∥
∑
i∈I

Λ∗
i gi ∥2≤ B

∑
i∈I

∑
j∈Ji

| < gi, fij > |2 = B
∑
i∈I

∥ gi ∥2 .

For the converse, we assume that {Λi : i ∈ I} is a g-Riesz basis for H it follows that

A
∑
i∈J1

∥ gi ∥2≤∥
∑
i∈J1

Λ∗
i gi ∥2≤ B

∑
i∈J1

∥ gi ∥2,

where J1 ⊂ J is a finite set.
If gi =

∑
j∈Ji

cijfij and

∥ gi ∥2= ⟨gi,
∑
j∈gi

cijfij⟩ =
∑
j∈J1

cij⟨gi, fij⟩

≤ (
∑
j∈Ji

|cij |2)
1
2 (

∑
jϵJ1

|⟨gi, fij⟩|2)
1
2 = (

∑
jϵJi

|cij |2)
1
2 ∥ gi ∥,

then for each i ∈ I
∥ gi ∥≤ (

∑
j∈Ji

|cij |2)
1
2 .

So, ∥
∑

i∈J1

∑
i∈Ji

cijΛ
∗
i (fij) ∥2≤ B(

∑
j∈Ji

|cij |2)
1
2 , and by the assumption we have the result.

References

[1] A. Aldroubi, U.C. Molter, Wavelets on irreglar grids with arbitrary dilation matrices and frame atoms
for 12(rd), Applied and Computational Harmonic Analysis, 17(2) 2004, 119-140.

[2] M.S. Asgari, A. Khosravi, Frames and bases of subspaces in Hilbert spaces, Journal of Mathematical
analysis and applications 308(2) 2005, 541-553.

[3] P.G. Casazza, G. Kutyniok, Finite Frames. Theory Applications. Birkhauser, New York, 2013.

[4] P.G. Casazza, G. Kutyniok, Frames of subspaces. Contemp. Math., 345 2004, 87-113.

[5] P.G. Casazza, G. Kutyniok, S. Li, Fusion frames and distributed processing, application Computer
Harmon analysis, 25(1) 2008, 114-132.

[6] P.G. Casazza, R.G. Lynch, Weaving properties of Hilbert space frames. In: Proceeding of SampTA,
2015, 110-114.

[7] O. Christensen, An Introduction to Frames and Riesz Bases, 2nd edn. Birkhauser, Boston, 2016.

[8] J.B. Conway, A Course in Functional Analysis, 2nd edn. Springer, New York, 1990.

[9] I. Daubechies, A. Grossmann, Y. Meyer, Painless nonorthogonal expansions, Journal of Mathematic
and Physics, 27(5) 1986, 1271-1286.

[10] R.J. Duffin, A.C. Schaeffer, A class of nonharmonic Fourier series. Trans. American mathematical
sciences society 72 1952, 341-366.



16 Mathematics and Computational Sciences, Vol 3(1), 2022

[11] A. Khosravi, M.S. Asgari, Frames and beses in tensor product of Hilbert spaces, Journal of Interntional
Mathematic, 4(6)2003, 527-537.

[12] A. Khosravi, M.M. Azandaryani, Approximate duality of g-frames in Hilbert spaces, Acta Mathemat-
ica Sinica, 34B(3) 2014, 639-652.

[13] A. Khosravi, K. Musazadeh, Fusion frames and g-frames. Journal of Mathematical analysis and ap-
plications, 342(2) 2008, 1068-1083.

[14] D. Li, H. Ogawa, Pseudoframes for subspaces with applications, Journal of Fourier Analysis and
Application, 10(4) 2004, 409-431.

[15] W. Sun, G-frames and g-Riesz bases, Journal of Mathematical analysis and applications, 322(1) 2006,
437-452.


	Introduction
	G-frame

