
Vol 1(1), 2020, pp:1-8

DOI:

ISSN:

http://mcs.qut.ac.ir/

Legendre Wavelets Technique for Special Initial-Value

Heat Transfer Problem in the Quarter Plane

B. Babayar-Razlighi 1, M. Solaimani 2

Abstract : In this work we have solved the heat transfer equation by means of the Volterra integral
equation and Legendre Wavelets. Indeed, numerical facts show that resolving the related partial differential
equation is difficult which motivates the choice of this approach. The integral equation corresponding to
this system is a Volterra type of the first kind. These systems are ill posed, therefore an appropriate
methods to solve this type of systems is wavelets approach, since wavelets can be generated in the space of
solutions. In this work we use Legendre wavelets to solve the corresponding integral equation. Numerical
implementation of the method is illustrated by benchmark problems originated from heat transfer. The
time evolution of the initial heat function along with the x−axis is exhibited in a three dimensional plot.
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1 Introduction

In this paper, we consider the following special initial-value problem describing the heat transfer on a
quarter plane in one spatial dimension

ut = uxx, 0 < x <∞, 0 < t, (1.1)

u(x, 0) = f(x), 0 < x <∞, (1.2)∫ s(t)

0

u(x, t)dx = g(t), 0 < t, 0 < s(t), (1.3)

and
|u(x, t)| ≤ C1 exp

{
C2|x|1+γ} , γ < 1. (1.4)

Where u(x, t) is the unknown temperature function Ci, i = 1, 2, are positive constants and f, g and s are
continuous functions.
In [6, 7] the authors have solved similar problems using product integration technique, which is a good
method in the case of short time intervals and the second kind integral equation [15, 12, 1, 2, 3, 4, 5]. But
the product integration is not efficient in the case of integral equations of the first kind therefore we solve
this problem by wavelets in the interval [0, 1] and show the efficiency of the method through two simple

1Corresponding author: Department of Mathematics, Qom University of Technology, Qom, Iran, baba-
yar@qut.ac.ir

2Department of Physics, Qom University of Technology, Qom, Iran, solaimani@qut.ac.ir

DOI:
http://mcs.qut.ac.ir/


2 Mathematics and Computational Sciences, Vol 1(1), 2020

examples. More applications of Legendre wavelets for the integral equations of the first kind can be found
in [9, 18].

2 Equivalent Integral Equation

This section includes some definitions, lemmas and theorems associated to equations (1.1)-(1.4).

Definition 2.1. The fundamental solution of heat equation is denoted by K(x, t), and the Green’s function
is denoted by G(x, ξ, t),

K(x, t) :=
1√
4πt

exp

{
−x

2

4t

}
, G(x, ξ, t) := K(x− ξ, t)−K(x+ ξ, t).

Here and throughout this paper, lhs := rhs, means that lhs is defined by the rhs, similarly lhs =: rhs,
means that rhs is defined by the lhs.

Lemma 2.2. For any integrable function f satisfies |f(x)| ≤ C1 exp{C2x
2}, where C1 and C2 are positive

constants, limt↓0
∫∞
−∞K(x− ξ, t)f(ξ)dξ = f(x), and 0 < t, at the point x of continuity of f .

Proof. See Lemma 3.4.3 of [11].

Theorem 2.3. For continuous functions f, g and s with g(0) =
∫ s(0)

0
f(ξ)dξ the solution u of equations

(1.1)-(1.3), satisfying a growth condition of the form (1.4) has the following representation

u(x, t) =

∫ ∞

0

G(x, ξ, t)f(ξ)dξ − 2

∫ t

0

∂K

∂x
(x, t− τ)ϕ(τ)dτ, (2.1)

if and only if ϕ is a piecewise-continuous solution of integral equation,

2

∫ t

0

[K(0, t− τ)−K(s(t), t− τ)]ϕ(τ)dτ = g(t)−
∫ s(t)

0

∫ ∞

0

G(x, ξ, t)f(ξ)dξdx, 0 < t. (2.2)

Proof. We are going to search u(x, t) = u1(x, t)+u2(x, t), in such a way that u1, u2 satisfy the heat equation
and each of them obeys one of the equations (1.2), (1.3). For this aim, let u1(x, t) = −2

∫ t

0
∂K
∂x

(x, t −
τ)ϕ(τ)dτ, u2(x, t) =

∫∞
0
G(x, ξ, t)f(ξ)dξ. Based on [11], chapter one, both of u1 and u2 are solution

of equation (1.1). Lemma 2.2 yields u(x, 0) = u2(x, 0) = limt↓0
∫∞
0
G(x, ξ, t)f(ξ)dξ = limt↓0

∫∞
−∞K(x −

ξ, t)fo(ξ)dξ = f(x), where fo is the odd extension of f to −∞ < x <∞. Eq. (1.3) implies

g(t) =

∫ s(t)

0

[∫ ∞

0

G(x, ξ, t)f(ξ)dξ − 2

∫ t

0

∂K

∂x
(x, t− τ)ϕ(τ)dτ

]
dx (2.3)

=

∫ s(t)

0

∫ ∞

0

G(x, ξ, t)f(ξ)dξdx− 2

∫ t

0

∫ s(t)

0

∂K

∂x
(x, t− τ)ϕ(τ)dxdτ

=

∫ s(t)

0

∫ ∞

0

G(x, ξ, t)f(ξ)dξdx− 2

∫ t

0

ϕ(τ) [K(x, t− τ)]x=s(t)
x=0 dτ

=

∫ s(t)

0

∫ ∞

0

G(x, ξ, t)f(ξ)dξdx− 2

∫ t

0

ϕ(τ) [K(s(t), t− τ)−K(0, t− τ)] dτ,

equivalent to the equation (2.2). Note that in row 2 we apply Fubini’s theorem. By consideration of
chapter3 of [11] the solution u is unique in the class (1.4) and hence the proof is completed.
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3 Legendre Wavelet technique

Wavelets were first applied in geophysics to analyze data from seismic surveys, used in oil and mineral
explorations to get ”pictures” of layering in the subsurface rock [10]. There are several bases for wavelets,
such as Haar wavelet, Daubechies wavelets, Chebyshev wavelets, Legendre wavelets, etc [10, 17, 8, 16, 13].
In this work we consider the Legendre wavelets, which belong to an orthonormal set of functions with
respect to the weight function w(t) = 1, in the interval [0, 1], as follow

ψnm(t) =

{ √
m+ 1

2
2k/2Pm(2kt− 2n+ 1), n−1

2k−1 ≤ t < n
2k−1

0, otherwise
, t ∈ [0, 1], (3.1)

where n = 1, ..., 2k−1, k is an integer, m is the degree of Legendre polynomial Pm, m = 0, 1, ...,M − 1, for
some positive integer M . A function f ∈ L2[0, 1], can be represented as series of Legendre wavelets

f(t) =

∞∑
n=1

∞∑
m=0

fnmψnm(t), t ∈ [0, 1], (3.2)

where fnm =< f, ψnm >, is the inner product of f and ψnm in the Hilbert space L2[0, 1]. In numerical
processes, we consider the following approximation

f(t) ≈
2k−1∑
n=1

M−1∑
m=0

fnmψnm(t) = FTΨ(t) =: PM
k−1 (f(t)) , t ∈ [0, 1], (3.3)

where

F =
[
f10, f11, ..., f1,M−1, f20, f21, ..., f2,M−1, ..., f2k−1,0, ..., f2k−1,M−1

]T
= [f1, f2, ..., fM , fM+1, ..., f2k−1M ]T , (3.4)

Ψ(t) =
[
ψ10(t), ψ11(t), ..., ψ1,M−1(t), ψ20(t), ψ21(t), ..., ψ2,M−1(t), ..., ψ2k−1,0(t), ..., ψ2k−1,M−1(t)

]T
= [ψ1(t), ψ2(t), ..., ψM (t), ψM+1(t), ..., ψ2k−1M (t)]T , (3.5)

and for the simplicity of numerical evaluations, we rearrange indices in the second representation of
vectors by the mapping ([ i−1

M
] + 1, i −M [ i−1

M
] − 1) → i, 1 = 1, ..., 2k−1M , where [x] denotes the greatest

integer less than or equal to x. Now, we are going to give a theorem on convergence analysis of the
approximated equation (3.3). For this aim, let us define VM

k :=
{
ψnm : n = 1, ..., 2k,m = 0, 1, ...,M − 1

}
,

then

Theorem 3.1. Let f ∈ CM [0, 1] and PM
k (f(t)) ∈ VM

k , then∣∣∣f(t)− PM
k (f(t))

∣∣∣ ≤M12
−M(k+2) max

ξ∈[0,1]

∣∣∣f (M)(ξ)
∣∣∣ ,

where M1,is a constant, and PM
k is defined by (3.3).

Proof. See Theorem 2.4 of [14].
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4 Numerical solution of Weakly singular Volterra integral
equation

In this section in order to solve numerically the integral equation (2.2), we use Legendre wavelets. For

given functions f, g and s, the right hand side function rhs(t) =
√
π
(
g(t)−

∫ s(t)

0

∫∞
0
G(x, ξ, t)f(ξ)dξdx

)
is known. So the integral equation (2.2) yields∫ t

0

[
1− exp

{
− s(t)2

4(t− τ)

}]
ϕ(τ)√
t− τ

dτ = rhs(t), 0 < t. (4.1)

Using Eq. (3.3) for approximate ϕ(t) ≃ ΦTΨ(t) and rhs(t) ≃ RTΨ(t) in Eq. (4.1), implies

ΦT

∫ t

0

[
1− exp

{
− s(t)2

4(t− τ)

}]
Ψ(τ)√
t− τ

dτ = RTΨ(t), t ∈ [0, 1], (4.2)

where ΦT = [c1, c2, ..., c2k−1M ]T , is an unknown vector. Let w(t) =
∫ t

0

[
1− exp

{
− s(t)2

4(t−τ)

}]
Ψ(τ)√
t−τ

dτ , then

from Eq. (3.3) we obtain w(t) ≃WΨ(t), where W is a 2k−1M × 2k−1M known matrix. Substituting these
quantities in (4.2) yields, ΦTWΨ(t) = RTΨ(t). Hence, the linear system WTΦ = R, must be solved.

5 Numerical results

Example 5.1. In the problem (1.1)-(1.4), for f(x) = 1, s(t) =
√
t,

g(t) =
t

2
+

{ (
1− exp{ t

1−4t
}
)√

−1+4t
π

+
√
tErfc

(√
t

−1+4t

)
, 1

4
< t

0, otherwise
,

and rhs(t) =

{ (
1− exp{ t

1−4t
}
)√

−1 + 4t+
√
πtErfc

(√
t

−1+4t

)
, 1

4
< t

0, otherwise,
, the integral equation as-

sociated to this problem is, ∫ t

0

[
1− exp

{
− t

4(t− τ)

}]
ϕ(τ)√
t− τ

dτ = rhs(t),

which has the exact solution ϕ(t) =

{
1, 1

4
< t

0, otherwise
. The column 2 of Table 1 shows absolute errors of ϕ̃

at t = 0.15i, i = 1, 2, 3, 4, 5, 6, ϕ is exact solution and ϕ̃ is evaluated by Legendre Wavelets technique with
M = 5, k = 3. Figure 1 shows the time variation of these solutions for the Example 5.1.
Columns 3, 4, 5, 6, 7, 8 of the Table 1 show absolute errors of ũ at (x, t) = (0.15i, 0.15j), i, j = 1, 2, 3, 4, 5, 6,

u is the exact solution and ũ is the approximated solution evaluated numerically substituting ϕ by ϕ̃ in u
representation Eq. (2.1). Here eij , i, j = 1, 2, 3, 4, 5, 6 is the absolute error of ũ at (0.15i, 0.15j).

Example 5.2. In the problem (1.1)-(1.4), for f(x) = 1, s(t) =
√
t, g(t) = t

2
+ t5/2

60
√

π

(
64− 102

e1/4
+ 81

√
πErfc{ 1

2
}
)
,

and rhs(t) = t5/2

60

(
64− 102

e1/4
+ 81

√
πErfc{ 1

2
}
)
, the integral equation associated to this problem is,

∫ t

0

[
1− exp

{
− s(t)2

4(t− τ)

}]
ϕ(τ)√
t− τ

dτ = rhs(t),



Legendre Wavelets Technique for Special Initial-Value Heat Transfer Problem in the Quarter Plane 5

Table 1: Absolute errors of ϕ̃ and ũ for the Example 5.1.

i |ϕ− ϕ̃|i ei1 ei2 ei3 ei4 ei5 ei6
1 negligible negligible 3.22× 10−14 2.18× 10−14 2.21× 10−10 3.75× 10−10 2.69× 10−8

2 negligible negligible 1.22× 10−15 1.63× 10−15 8.66× 10−11 1.00× 10−10 4.76× 10−9

3 negligible negligible 5.41× 10−16 1.48× 10−16 4.69× 10−11 3.73× 10−11 7.43× 10−9

4 1.33× 10−13 negligible 3.53× 10−16 1.22× 10−17 1.84× 10−11 8.60× 10−12 3.55× 10−10

5 5.17× 10−11 negligible 1.32× 10−16 1.10× 10−17 5.59× 10−12 1.52× 10−13 6.67× 10−11

6 6.64× 10−12 negligible 3.67× 10−17 1.08× 10−18 1.06× 10−12 1.29× 10−12 4.19× 10−12

Figure 1: Variations of ϕ(t) and ϕ̃(t) as functions of t for the Example 5.1.

which has the exact solution ϕ(t) = t2. The column 2 of the Table 2 shows absolute errors of ϕ̃ at

t = 0.15i, i = 1, 2, 3, 4, 5, 6, ϕ is the exact solution and ϕ̃ is evaluated by Legendre Wavelets technique with
M = 5, k = 3. Figure 3 shows the time evolution of these solutions for the Example 5.2.
Columns 3, 4, 5, 6, 7, 8 of the Table 2 show absolute errors of ũ at (x, t) = (0.15i, 0.15j), i, j = 1, 2, 3, 4, 5, 6,

u is the exact solution and ũ is the approximated solution evaluated numerically substituting ϕ by ϕ̃ in u
representation Eq. (2.1). Here eij , i, j = 1, 2, 3, 4, 5, 6 is the absolute error of ũ at (0.15i, 0.15j).

Table 2: Absolute errors of ϕ̃ and ũ for the Example 5.2.

i |ϕ− ϕ̃|i ei1 ei2 ei3 ei4 ei5 ei6
1 6.94× 10−18 2.33× 10−15 1.96× 10−12 1.07× 10−12 1.09× 10−9 8.65× 10−9 6.92× 10−9

2 7.22× 10−16 3.70× 10−16 1.72× 10−13 7.88× 10−14 5.41× 10−11 7.41× 10−10 1.36× 10−9

3 3.89× 10−16 1.19× 10−16 1.63× 10−14 4.27× 10−15 9.72× 10−12 1.62× 10−11 4.02× 10−10

4 5.98× 10−13 4.91× 10−17 2.26× 10−15 2.83× 10−15 9.34× 10−12 1.40× 10−11 1.14× 10−10

5 1.63× 10−11 2.34× 10−17 1.98× 10−15 1.66× 10−15 4.47× 10−12 7.93× 10−12 2.46× 10−11

6 1.46× 10−12 1.21× 10−17 6.86× 10−16 3.89× 10−16 1.63× 10−12 3.01× 10−12 1.05× 10−12
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Figure 2: Variation of the ũ(x, t) as a function of (x, t) for the Example 5.1.
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Figure 4: Variation of the ũ(x, t) as a function of (x, t) for the Example 5.2.
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