[1] S.M.A. Aleomraninejada, M. solaimani, Electronic spectrum of linear Schrodinger equations with
some potentials by Sinc-Galerkin and Sinc-Collocation methods, submited.
[2] S.M.A. Aleomraninejada, M. solaimani, Numerical solution of some non-linear eigenvalue differential
equations by nite difference-self consistent, Mathematical Analysis and Convex Optimization, 1(1)
2020, 57-64.
[3] S.M.A. Aleomraninejad, M. Solaimani, M. Mohsenizadeh, L. Lavaei, Discretized Euler-Lagrange Vari-
ational Study of Nonlinear Optical Recti cation Coefficients, Physica Scripta, 93(9) 2018, 095803 .
[4] A.K. Alomari, M.S.M. Noorani, R. Nazar, Explicit series solutions of some linear and nonlinear
Schrodinger equations via the homotopy analysis method, Communications in Nonlinear Science and
Numerical Simulation, 14(4) 2009, 1196-1207.
[5] A.R. Amani, M.A. Moghrimoazzen, H. Ghorbanpour, S. Barzegaran, The ladder operators of Rosen-
Morse Potential with Centrifugal term by Factorization Method, African Journal of Mathematical
Physics, (10) 2011, 31-37.
[6] C.B. Compean, M. Kirchbach, The trigonometric RosenMorse potential in the supersymmetric quan-
tum mechanics and its exact solutions, Journal of Physics A: Mathematical and General, 39(3) 2005,
547.
[7] M. Dehghan, F. Emami-Naeini, Solving the two-dimensional Schrodinger equation with nonhomoge-
neous boundary conditions, Applied Mathematical Modelling, 37(22) 2013, 9379-9397.
[8] M. Dehghan, A. Saadatmandi, The numerical solution of a nonlinear system of second-order boundary
value problems using the sinc-collocation method, Mathematical and Computer Modelling, 46(11)
2007, 1434-1441.
[9] M. El-Gamel, Sinc-collocation method for solving linear and nonlinear system of second-order bound-
ary value problems, Applied Mathematics, 3(11) 2012, 1627-1633.
[10] S.M. Ikhdair, M. Hamzavi, R. Sever, Spectra of cylindrical quantum dots: The effect of electrical and
magnetic elds together with AB
ux eld, Physica B: Condensed Matter, 407(23) 2012, 4523-4529.
[11] A.M. Ishkhanyan, Exact solution of the Schrodinger equation for the inverse square root potential
pV0
x , Europhysics Letters, 112(1) 2015, 10006.
[12] A. Niknam, A.A. Rajabi, M. Solaiman, Solutions of D-dimensional Schrodinger equation for Woods
Saxon potential with spin-orbit, coulomb and centrifugal terms through a new hybrid numerical tting
Nikiforov-Uvarov method, J Theor Appl Phys, 10(1) 2016, 53-59.
[13] T. Okayama, T. Matsuo, M. Sugihara, Error estimates with explicit constants for Sinc approximation,
Sinc quadrature and Sinc inde nite integration, Numerische Mathematik, 124(2) 2013, 361-394.
[14] M. Solaimani, S.M.A. Aleomraninejad, L. Leila, Optical recti cation in quantum wells within different
con nement and nonlinearity regimes, Superlattices and Microstructures, (111) 2017, 556-567.
[15] F. Stenger, Approximations via Whittaker's Cardinal Function, Journal of Approximation Theory,
17(3) 1976, 222-240.
[16] F. Stenger, Numerical Methods Based on Sinc and Analytic Functions, Springer, Berlin, New York,
1993.
[17] G. Xue, E. Yuzbasi, Fixed point theorems for solutions of the stationary Schrodinger equation on
cones, Fixed Point Theory and Applications, 2015(1) 2015, 1-11.