[1] B. Ahmad, J.J. Nieto, A. Alsaedi, M. El-Shahed, A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal. RWA, 13 2012, 599-606.
[2] B. Ahmad, J.J. Nieto, Solvability of nonlinear Langevin equation involving two fractional orders with Dirichlet boundary conditions, Int. J. Difference Equ., 2010.
[3] B. Ahmad, J.J. Nieto, A. Alsaedi, A nonlocal three-point inclusion problem of Langevin equation with two different fractional orders, Adv. Diff. Equ., 2012(1) 2012, 1-16.
[4] O. Baghani, On fractional Langevin equation involving two fractional orders, Commun. Nonlinear Sci. Numer. Simul., 42 2017, 675-681.
[5] E. Bas, R. Ozarslan, Real world applications of fractional models by Atangana{Baleanu fractional derivative, Chaos, Solitons & Fractals, 116 2018, 121-125.
[6] G. Covi, Inverse problems for a fractional conductivity equation, Nonlinear Analysis, 2019.
[7] W.P. do Carmo, M.K. Lenzi, E.K. Lenzi, M. Fortuny, A.F. Santos, A fractional model to relative viscosity prediction of water-in-crude oil emulsions, Journal of Petroleum Science and Engineering, 172 2019, 493-501.
[8] M. D'Ovidio, P. Loreti, S.S. Ahrabi, Modi ed fractional logistic equation, Physica A: Statistical Mechanics and its Applications, 505 2018, 818-824.
[9] C.H. Eab, S.C. Lim, Fractional generalized Langevin equation approach to single- le diffusion, Physica A, 389 2010, 2510-2521.
[10] H. Eslamizadeh, H. Raanaei, Dynamical study of fission process at low excitation energies in the framework of the four-dimensional Langevin equations, Physics Letters B, 783 2018, 163-168.
[11] H. Fazli, J.J. Nieto, Fractional Langevin equation with anti-periodic boundary conditions, Chaos, Solitons & Fractals, 114 2018, 332-337.
[12] J.H. Jeon, R. Metzler, Fractional Brownian motion and motion governed by the fractional Langevin equation in con ned geometries, Physical Review, 81 2010, 021103.
[13] N. Kadkhoda, H. Jafari, Application of fractional sub-equation method to the space-time fractional differential equations, Int. J. Adv. Appl. Math. Mech, 4(2) 2017, 1-6.
[14] N. Kadkhoda, A numerical approach for solving variable-order differential equations using Bernstein polynomials, Alexandria Engineering Journal, 59(5) 2020, 3041-3047.
[15] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and application of fractional differential equations, Elsevier B.V, Netherlands 2006.
[16] R. Kubo, The uctuation{dissipation theorem, Rep. Prog. Phys., 29 1966, 255-284.
[17] R. Kubo, M. Toda, N. Hashitsume, Statistical Physics II, second ed., Springer{Verlag, Berlin, 1991.
[18] B. Li, S. Sun, Y. Sun, Existence of solutions for fractional Langevin equation with infinite-point boundary conditions, J. Appl. Math. Comput., 2017, 683-692.
[19] S.C. Lim, M. Li, L.P. Teo, Langevin equation with two fractional orders, Phys. Lett. A 372 2008, 6309-6320.
[20] J. Long, R. Xiao, W. Chen, Fractional viscoelastic models with non singular kernels, Mechanics of Materials, 127 2018, 55-64.
[21] J.A.T. Machado, A.M. Lopes, Fractional-order modeling of a diode, Commun. Nonlinear Sci. Numer. Simul., 70 2019, 343-353.
[22] A. Ortega, J.J. Rosales, J.M. Cruz-Duarte, M. Gua, Fractional model of the dielectric dispersion, Optik, 180 2019, 754-759.
[23] I. Podlubny, Fractional differential equations, Academic Press, San Diego, CA, 1999.
[24] J.V.C. Sousa, K.D. Kucche, E.C. de Oliveira, Stability of -Hilfer impulsive fractional differential equations, Applied Mathematics Letters, 88 2019, 73-80.
[25] S. Ullah, M.A. Khan, M. Farooq, A fractional model for the dynamics of TB virus, Chaos, Solitons & Fractals, 116 2018, 63-71.
[26] T. Yu, K. Deng, M. Luo, Existence and uniqueness of solutions of initial value problems for nonlinear Langevin equation involving two fractional orders, Commun. Nonlinear Sci. Numer. Simul., 19 2014, 1661-1668.
[27] F.S. Zafarghandi, M. Mohammadi, E. Babolian, S. Javadi, Radial basis functions method for solving the fractional diffusion equations, Appl. Math. Comput., 342 2019, 224-246.