Mathematics and Computational SciencesMathematics and Computational Sciences
http://mcs.qut.ac.ir/
Sun, 01 Nov 2020 01:52:51 +0100FeedCreatorMathematics and Computational Sciences
http://mcs.qut.ac.ir/
Feed provided by Mathematics and Computational Sciences. Click to visit.Legendre Wavelets Technique for Special Initial-Value Problem for the Quarter Plain of Heat Transfer
http://mcs.qut.ac.ir/article_44461_6143.html
In this paper we have solved the heat transfer equation by means of the Volterra integral equation and Legendre Wavelets. Since, due to numerical facts, solution of the related partial differential equation is difficult, thus we have applied integral equation model. The integral equation model of this system is a Volterra type of the first kind. These systems are ill posed system, and appropriate method for such systems are wavelets, since wavelets can be generated in the space of solutions. In this work we apply the Legendre wavelets to solve the corresponding integral equation. Numerical implementation of the method is illustrated by benchmark problems originated from heat transfer. The behavior of the initial heat function along with the position axis during the time have been shown through three dimensional plots.Fri, 31 Jul 2020 19:30:00 +0100Tripled fixed point results via fractional differential equations
http://mcs.qut.ac.ir/article_44462_6143.html
This article in want to study a class of mixed monotone operators with convexity on ordered Banach spaces and investigate some new tripled fixed point results, also in this article, we examine the existence and uniqueness of tripled fixed points without assuming the operator to be compact or continuous. As applications, we apply the results obtained in this paper to study the existence and uniqueness of positive solutions for a fractional boundary value problem.Fri, 31 Jul 2020 19:30:00 +0100Coupled fixed point results for mappings without mixed monotone property in partially ordered ...
http://mcs.qut.ac.ir/article_44463_6143.html
In this paper, we prove some coupled fixed point theorems for nonlinear contractive mappings do not having the mixed monotone property in partially ordered G-metric spaces.Fri, 31 Jul 2020 19:30:00 +0100Mathematical Computation of Quantum Optical Control Systems
http://mcs.qut.ac.ir/article_44660_6143.html
Some models of linear control system schemas are developed here for quantum linear systems. The most important linear devices in quantum optics are introduced with their differential equations. These linear quantum systems are zero-order and first-order transfer functions with one pole and one zero. We mathematical compute transfer function of different interconnections by using zero-order and first-order systems. for instance, by designing series and feedback interconnection, we will obtain higher-order quantum linear systems. Also, we will analyze a closed-loop feedback of a first-order linear quantum system containing a gain in feedback pathFri, 31 Jul 2020 19:30:00 +0100Investigation of light nuclei in the cluster model by means of relativistic and ...
http://mcs.qut.ac.ir/article_44679_6143.html
Calculation of the energy of even-even isotopes using collective models in nuclear physics has its own complication. Therefor different physical models are used to study nuclear isotopes. The cluster model is a new and successful model for investigating the properties of isotopes. Using this model, the interaction between core and cluster can be chosen and static properties, including the eigenvalues energy and wave function, can be calculated. Considering the modified Eckart plus Hulthen potentials and Coulomb repulsive potential for interactions between clusters and with substituting this potential in the Schrödinger equations, by Nikiforov-Uvarov analytical method some of the static properties including the energy levels and wave functions are obtained for 14C, 16O, 20Ne, 24Mg, 28Si, and 32S isotopes.Fri, 31 Jul 2020 19:30:00 +0100Sinc-Integral method to solve the linear Schrodinger equation
http://mcs.qut.ac.ir/article_44863_6143.html
The integral equation method is presented to solve the linear Schrodinger equation and obtain the eigenvalues. The eigenvalues obtained through this method are compared with Sinc-Collocation method. We show that our method is more accurate than Sinc-Collocation method. Some properties of the Sinc methods required for our subsequent development are given and utilized. Numerical examples are included to demonstrate the validity and applicability of the presented techniques.Fri, 31 Jul 2020 19:30:00 +0100