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Abstract: We consider the spin-one DKP equation in the presence of vector Cornell and exponential 
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1 Introduction 

The relativistic Duffin-Kemmer-Petiau (DKP) equation describes spin-zero and spin-one bosons in a single 

unified basis [9,11,16]. From its formulation, the equation has been used to analyze various phenomena of 

particle and nuclear physics including K-meson decays, nucleus-meson scattering, etc [4]. The studies on DKP 

equation in particular play an important role in the study of spin-one bosons due to complicated nature of Proca 

equation. However, it ought to be mentioned that the DKP is definitely complicated in comparison with 

Schrödinger, Dirac and Klein-Gordon frameworks.  

On the contrary to other wave equations of quantum mechanics, a few problems have been regarding spin-one 

DKP equation including linear, coulomb or harmonic terms [5]. In recent papers, the equation has been 

considered in generalizations of ordinary quantum mechanics including non-commutative and curved-space 

formalisms [6,17].  
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On the other hand, the integral transforms, and in particular the Laplace transform, have been applied to a 

variety of quantum mechanical problems in both nonrelativistic and relativistic regimes.Schrödinger equation 

with the rather exponential-type Mie-type potential was studied in Ref [2]. A Laplace transform of 

Hypergeometric function was find in Ref. [13] to solve the associated Schrödinger equations. The Laplace 

transform has also been well applied to relativistic equations of quantum mechanics.  In Dirac framework, the 

technique has been studied in connection with the so-called spin and pseudospin symmetries of equation in 

position-dependent formalism with a coulomb term [15].  

In very recent works, the spin-one DKP equation has been discussed from new aspects. Y. Chargui and A. Dhahbi 

considered an extended version of the spin-one Duffin–Kemmer–Petiau oscillator by combining a Lorentz tensor 

spin-orbit coupling with the basic DKP oscillator one [7]. Hamil et al. considered the spin-one DKP equation with 

a nonminimal vector interaction with a generalized uncertainty principle [10]. De Montigny and Santos studied 

the Galilean Duffin-Kemmer-Petiau equation in arbitrary dimensions for a many-body purpose [12]. Sobhani 

and others considered bound and scattering states of the equation in q-deformed formulation [18]. Here, we 

intend to consider the spin-one DKP equation with Cornell and exponential terms and analyze the problem via 

Laplace transform approach. The most essential formulae of the spin-one DKP equation is quoted from[ 8,14,19].  

2. DKP Equation with a Nonminimal Vector Interaction  

2.1. General Formulae 

Considering only the nonminimal vector interaction, the time-independent DKP equation can be written as [8] 

                                                                                                                                                                                                    

(1)                                                                  

where P  is the projection operator such that 
2P P  and †P P  (c.f. Ref. [8] for more details) and 

  matrices are [8,14,19]  
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where is are the 3×3 matrices, ( )i jk ijks i   , ie stand for 1×3 matrices, 
1( )i j ijs  and 

0 (0,0,0) . I and 0 represent 3×3 unit and zero matrices, respectively, and T designates matrix 

transposition. The ten-component spinor can be written as 
1 10( ,..., )T   and partitioned in three 

spatial dimensions as [8] 
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or, equivalently [8,14,18,19] 
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Using the elegant approach of Ref. [14], we put 
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                                                                                                                                                                                                    (11) 

 

Now, introducing the notation [8] 
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Using Eqs. (9) and (11) in (4) and considering 0 0 ( )A A r  and ˆ( )rA A r r , we have [14] 
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The radial equations obtained from (6) are 
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2.2. ( 1) j Parity states 

Using Eqs. (13), (14) and (20) we may write [8] 
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                                                                                                                                                                                                             (29) 

 

3.1. Solutions for ( 1) j Parity State Solution for Cornell Potential   

We consider the Cornell potential (which consists of both confining and nonconfining terms and has 

successfully accounted for some data in particle physics) in our work 
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Let us now rewrite a series expansion of the from 
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where N   is a constant. We can now apply the inverse Laplace transform and write 
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Where 

                                                                                                                                                                                                         (45-b) 

 

                                                                                                                                                                                                         (45-c) 

 

                                                                                                                                                                                                         (45-d) 

 

                                                                                                                                                                                                          (45-e)   

                                                                                                                                                                                                           

                                                                                                                                                                                                          (45-f)                          

 

Substituting the approximation, equation appears as 

 

                                                                                                                                                                                                             (46) 

                                                                                                                                                                                                              

Where 

 

 

 

                                                                                                                                                                                                             (47) 

 

 

Now, applying the chance of variable 

 

                                                                                                                                                                                                             (48) 

Eq. (46) appears as  

 

                                                                                                                                                                                                             (49)        

 

A gauge transformation of the form  

                                                                                                                                                                                                             (50) 

 

brings Eq. (49) into the form 

1 1 3
.

2 2 2
0

c
r  


 

 
 
 

 
            

2
2 2 20 1 1 1

2 0 0 1 0 0 02

d F x x x
j j c v e v a j j c e F x k j j c F x

dx

  
           

 

  

  

2
1

2 0

2
1

j j c v

c

k j j






 

 

  

 

2 ,
x

y ce




   
 

2 2
1 10 0.

02 24

0
d F y d y c

F y
y dy ydy y

F 
      

 
 
 

   0
F y y y


 

 
 

 
 

2

2 1 0.
2 4

d y d y y
y c y

dydy

 
     

 
 
 

0

0

r r
x

r


 

0
a r  

1 3 3
1

0 2 2
0

c
r  

  
 
 
 

1 4 6
,

1 2 2
0

c
r  

 
 
 
 



42 Mathematics and Computational Sciences, Vol 4(3) 2023 

 

                                                                                                                                                                                                             (51) 

 

Using zero boundary conditions for the function and its first derivative, we obtain the first-order Laplace-

space equation  
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which simply gives 
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The inverse Laplace transform of the latter is  

                                                                                                                                                                                                             (54) 

 

A simple comparison of Eq. (54) with the integral representation of Hypergeometric function, i.e. 
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indicates that  
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where 
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which simply determines the component via Eq. (50). By analogy to the approach of previous section, the 

energy in this case appears as 
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5. Conclusions 

We considered spin-one DKP equation with Cornell and exponential potentials. In our calculations, we used 
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Hypergeometric function, we reported the component of the wave function. The energy was obtained from 

fundamental requirements of the wave functions. In the calculation, we had to use a Pekeris-type approximation 

in the case of exponential interaction to provide arbitrary-state solutions. The results can be used to study the 

characteristics of spin-one mesons including their mass spectrum, decay rates, charge radius, curvature 

parameter, etc.  Also, the idea of using integral transforms can be extended to the fractional case and other 

dimensions as well. 
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