[1] H. Ahmadov, S.M. Nagiyev, M. Qocayeva, K. Uzun, and V. Tarverdiyeva, Bound state solution of the Klein–Fock–Gordon equation with the Hulthén plus a ring-shaped-like potential within SUSY quantum mechanics, International Journal of Modern Physics A, 33(33) 2018, 1850203.
[2] H. Ahmadov, M. Qocayeva, and N. S. Huseynova, The bound state solutions of the D-dimensional Schrödinger equation for the Hulthén potential within SUSY quantum mechanics, International Journal of Modern Physics E, 26(5) 2017, 1750028.
[3] A. Ahmadov, M. Naeem, M. Qocayeva, and V. Tarverdiyeva, Analytical bound-state solutions of the Schrödinger equation for the Manning–Rosen plus Hulthén potential within SUSY quantum mechanics, International Journal of Modern Physics A, 33(3) 2018, 1850021.
[4] C. Berkdemir, Application of the nikiforov-uvarov method in quantum mechanics, Theoretical Concepts of Quantum Mechanics, 2012.
[5] C. Berkdemir, A. Berkdemir, and R. Sever, Systematical approach to the exact solution of the Dirac equation for a deformed form of the Woods–Saxon potential, Journal of Physics A: Mathematical and General, 39(43) 2006, 13455.
[6] C. Berkdemir, A. Berkdemir, and J. Han, Bound state solutions of the Schrödinger equation for modified Kratzer molecular potential, Chemical Physics Letters, 417(4-6) 2006, 326-329.
[7] V. Badalov, B. Baris, and K. Uzun, Bound states of the D-dimensional Schrödinger equation for the generalized Woods Saxon potential, Modern Physics Letters A, 34(14) 2019, 1950107.
[8] S.-H. Dong and J. Garcia-Ravelo, Exact solutions of the s-wave Schrödinger equation with Manning–Rosen potential, Physica Scripta, 75(3) 2007, 307.
[9] B. Falaye and K. Oyewumi, Solutions of the Dirac equation with spin and pseudospin symmetry for trigonometric Scarf potential in D-dimensions, arXiv preprint arXiv:1111.6501, 2011.
[10] B. Gönül and İ. Zorba, Supersymmetric solutions of non-central potentials, Physics Letters A, 269(2-3) 2000, 83-88.
[11] L.A. Girifalco, V.G. Weizer, Application of the Morse potential function to cubic metals, Physical Review, 114(3) 1959, 687.
[12] B. Ita, H. Louis, T. Magu, N. Nzeata-Ibe, Bound State Solutions of the Klein Gordon Equation with Woods-Saxon Plus Attractive Inversely Quadratic Potential Via Parametric Nikiforov-Uvarov Method, World Scientific News, 74 2017, 280-287.
[13] C.-S. Jia, P. Guo, Y.-F. Diao, L.-Z. Yi, and X.-J. Xie, Solutions of Dirac equations with the Pöschl-Teller potential, The European Physical Journal A, 34(1) 2007, 41.
[14] R. Lincoln, K. Koliwad, and P. Ghate, Morse-potential evaluation of second-and third-order elastic constants of some cubic metals, Physical Review, 157(3) 1967, 463.
[15] S.M. Nagiyev, A. Ahmadov, Exact solution of the relativistic finite-difference equation for the Coulomb plus a ring-shaped-like potential, International Journal of Modern Physics A, 34(17) 2019,1950089.
[16] A.F. Nikiforov and V.B. Uvarov, Special functions of mathematical physics. Springer, 1988.
[17] M. Onyeaju, J. Idiodi, A. Ikot, M. Solaimani, H. Hassanabadi, Linear and nonlinear optical properties in spherical quantum dots: generalized Hulthén potential, Few-Body Systems, 57(9) 2016, 793-805.
[18] C. Pekeris, The rotation-vibration coupling in diatomic molecules, Physical Review, 45(2) 1934, 98.
[19] W.C. Qiang, S.H. Dong, Analytical approximations to the solutions of the Manning–Rosen potential with centrifugal term, Physics Letters A, 368(1-2) 2007, 13-17.
[20] G. Szegö, Orthogonal Polynomials, American Mathematical Society, New York, 1939.
[21] E. Yazdankish, Solving of the Schrodinger equation analytically with an approximated scheme of the Woods-Saxon potential by the systematical method of Nikiforov-Uvarov, International Journal of Modern Physics E, 29(6), 2020, 2050032.
[22] E. Yazdankish, Calculation of the energy eigenvalues of the Yukawa potential via variation principle, International Journal of Modern Physics E, 29(9) 2020, 2020.
[23] W. Yahya, K. Oyewumi, C. Akoshile, T. Ibrahim, Bound states of the relativistic dirac equation with equal scalar and vector Eckart potentials using the Nikiforov-Uvarov Method, Journal of Vectorial Relativity, 62410 2020, 2.
[24] L.Z. Yi, Y.F. Diao, J.-Y. Liu, C.-S. Jia, Bound states of the Klein–Gordon equation with vector and scalar Rosen–Morse-type potentials, Physics Letters A, 333(3-4) 2004, 212-217.