[1] G.E. Backus and J.F. Gilbert, Numerical application of a formalism for geophysical inverse problems, Geophysical Journal of the Royal Astronomical Society, 13 (1-3) 1967, 247-276.
[2] T. Belytschko, Y.Y. Lu , L. Gu, ElementāFree Galerkin methods, International Numerical Methods in Engineering, 37(2) 1994.
[3] F. Cao, M. Li, Spherical Data Fitting by Multiscale Moving Least Squares, Applied Mathematical Modelling, 39(12) 2015, 3448-3458. [4] M. Ghorbani, Diffuse Element Kansa Method, Applied Mathematical Sciences, 4(12) 2010, 583-594.
[5] Z. Komargodski, D. Levin, Hermite Type Moving Least Squares Approximations, Computers and Mathematics with Applications, 51(8) 2006, 1223-1232.
[6] P. Lancaster and K. Salkauskas, Surfaces Generated by Moving Least Squares Methods, mathematics of computation, 37(155) 1981.
[7] D.H. McLain, Drawing contours from arbitrary data points, The Computer Journal, 17(4) 1974, 318-324.
[8] A.R. Mitchell and R. Wait, Finite Element Analysis and Applications, John Wiley, 1985.
[9] Th. Most, Ch. Bucher, New concepts for moving least squares: An interpolating non-singular weighting function and weighted nodal least squares, Engineering Analysis with Boundary Elements 32(6) 2008, 461-470.
[10] B. Nayroles, G. Touzot, P. Villon, Generalizing the finite element method: Diffuse approximation and diffuse elements, Computational Mechanics, 10(5) 1992, 307-318.
[11] D. Shepard, A Two-Dimensional Interpolation Function for Irregularly Spaced Points, Proceedings of the 1968 23rd ACM national conference, 1968.