Frame and g-frame in Hilbert spaces

Document Type : Original Article

Authors

Faculty of Mathematical Sciences and Computer, Kharazmi University, 599 Taleghani Ave.

Abstract

Abstract : In this paper, we investigate frames and g-frames and show that constructs the direct sum of frames for a finite number of frames. also, We show under what condition it becomes g-frames to T *−g-frames. Finally, we generalize Sun ’s theorem to Parseval frames.

Keywords


[1] A. Aldroubi, U.C. Molter, Wavelets on irregular grids with arbitrary dilation matrices and frame atoms for 12(rd), Applied and Computational Harmonic Analysis, 17(2) 2004, 119-140.
[2] M.S. Asgari, A. Khosravi, Frames and bases of subspaces in Hilbert spaces, Journal of Mathematical analysis and applications 308(2) 2005, 541-553.
[3] P.G. Casazza, G. Kutyniok, Finite Frames. Theory Applications. Birkhauser, New York, 2013.
[4] P.G. Casazza, G. Kutyniok, Frames of subspaces. Contemp. Math., 345 2004, 87-113.
[5] P.G. Casazza, G. Kutyniok, S. Li, Fusion frames and distributed processing, application Computer Harmon analysis, 25(1) 2008, 114-132.
[6] P.G. Casazza, R.G. Lynch, Weaving properties of Hilbert space frames. In: Proceeding of SampTA, 2015, 110-114.
[7] O. Christensen, An Introduction to Frames and Riesz Bases, 2nd edn. Birkhauser, Boston, 2016.
[8] J.B. Conway, A Course in Functional Analysis, 2nd edn. Springer, New York, 1990.
[9] I. Daubechies, A. Grossmann, Y. Meyer, Painless nonorthogonal expansions, Journal of Mathematics and Physics, 27(5) 1986, 1271-1286.
[10] R.J. Duffin, A.C. Schaeffer, A class of nonharmonic Fourier series. Trans. American mathematical sciences society 72 1952, 341-366
[11] A. Khosravi, M.S. Asgari, Frames and beses in tensor product of Hilbert spaces, Journal of Interntional Mathematic, 4(6)2003, 527-537.
[12] A. Khosravi, M.M. Azandaryani, Approximate duality of g-frames in Hilbert spaces, Acta Mathematica Sinica, 34B(3) 2014, 639-652.
[13] A. Khosravi, K. Musazadeh, Fusion frames and g-frames. Journal of Mathematical analysis and applications, 342(2) 2008, 1068-1083.
[14] D. Li, H. Ogawa, Pseudoframes for subspaces with applications, Journal of Fourier Analysis and Application, 10(4) 2004, 409-431.
[15] W. Sun, G-frames and g-Riesz bases, Journal of Mathematical analysis and applications, 322(1) 2006, 437-452.
Volume 3, Issue 1
February 2022
Pages 10-16
  • Receive Date: 14 January 2022
  • Revise Date: 08 February 2022
  • Accept Date: 08 February 2022
  • First Publish Date: 08 February 2022