[1] A.I. Ahmadov, S.M. Aslanova, M. Sh Orujova, Sh V. Badalov, Shi-Hai Dong, Approximate bound state solutions of the Klein-Gordon equation with the linear combination of Hulthén and Yukawa potentials, Physics Letters A 383, 24 2019, 3010-3017.
[2] A.D. Alhaidari, H.Bahlouli, A. Al-Hasan, Dirac and Klein–Gordon equations with equal scalar and vector potentials, Physics Letters A, 349(1-4) 2006, 87-97.
[3] P. Aspoukeh, S.M. Hamad, Bound state solution of the Klein-Gordon equation for vector and scalar Hellmann plus modified Kratzer potentials, Chinese Journal of Physics, 68 2020, 224-235.
[4] R.L.Greene, C. Aldrich, Variational wave functions for a screened Coulomb potential, Physical Review A, 14(6) 1976, 2363.
[5] H. Hassanabadi, B.H. Yazarloo, A.N. Ikot, N. Salehi, S. Zarrinkamr, Exact analytical versus numerical solutions of Schrödinger equation for Hua plus modified Eckart potential. Indian journal of Physics, 87 2013, 1219-1223.
[6] H. Hassanabadi, E. Maghsoodi, A.N. Ikot, S. Zarrinkamar, Approximate arbitrary-state solutions of Dirac equation for modified deformed Hylleraas and modified Eckart potentials by the NU method. Applied Mathematics and computation, 219(17) 2013, 9388-9398.
[7] A.N. Ikot, G.J. Rampho, P.O. Amadi, M.J. Sithole, U.S. Okorie, M.I. Lekala, Shannon entropy and Fisher information-theoretic measures for Mobius square potential, The European Physical Journal Plus, 135(6) 2020, 1-13.
[8] A.N. Ikot, B.H.Yazarloo, S. Zarrinkamar, H. Hassanabadi, Symmetry limits of (D+1)-dimensional Dirac equation with Möbius square potential, The European Physical Journal Plus, 129 2014, 1-10.
[9] C.S. Jia, T. Chen, S. He, Bound state solutions of the Klein-Gordon equation with the improved expression of the Manning–Rosen potential energy model, Physics Letters A, 377(9) 2013, 682-686.
[10] R.J. LeRoy, R.B. Bernstein, Dissociation energy and long‐range potential of diatomic molecules from vibrational spacings of higher levels, The Journal of Chemical Physics, 52(8) 1970, 3869-3879.
[11] S. Miraboutalebi, Solutions of Klein–Gordon equation with Mie-type potential via the Laplace transforms. The European Physical Journal Plus, 135(1) 2020, 16.
[12] A.F. Nikiforov, V.B. Uvarov, Special functions of mathematical physics, 205 1988.
[13] C.A. Onate, M.C. Onyeaju, A.N. Ikot, J.O. Ojonubah, Analytical solutions of the Klein-Gordon equation with a combined potential. Chinese Journal of Physics, 54(5) 2013, 820-829.
[14] C.A. Onate, O. Ebomwonyi, K.O. Dopamu, J.O. Okoro, M.O. Oluwayemi, Eigen solutions of the D-dimensional Schrӧdinger equation with inverse trigonometry scarf potential and Coulomb potential. Chinese journal of physics, 56(5) 2018, 2538-2546.
[15] C.P. Onyenegecha, U.M. Ukewuihe, A.I. Opara, C.B. Agbakwuru, C.J. Okereke, N.R. Ugochukwu, I.J. Njoku, Approximate solutions of Schrödinger equation for the Hua plus modified Eckart potential with the centrifugal term, The European Physical Journal Plus, 135(7) 2020, 1-10.
[16] C. Tezcan, R. Sever, A general approach for the exact solution of the Schrödinger equation, International Journal of Theoretical Physics, 48 2009, 337-350.
[17] R.C. Wang, C.Y. Wong, Finite-size effect in the Schwinger particle-production mechanism, Physical Review D, 38(1) 1988, 348.
[18] B.H. Yazarloo, H. Hassanabadi, S. Zarrinkamar, Oscillator strengths based on the Möbius square potential under Schrödinger equation, The European Physical Journal Plus, 127 2012, 1-11.
[19] F. Yasuk, A. Durmus, I. Boztosun, Exact analytical solution to the relativistic Klein-Gordon equation with noncentral equal scalar and vector potentials, Journal of mathematical physics, 47(8) 2006.