Approximate solutions of Klein-Gordon equation with equal vector and scalar modified Mobius square plus Kratzer potentials with centrifugal term.

Document Type : Original Article

Authors

1 Faculty of Physical Sciences, Federal University of Technology Owerri, Nigeria

2 Faculty of Physical Sciences, Federal University of Technology Owerri, Nigeria.

Abstract

In this study, we present the analytical solutions of Klein-Gordon equation with modified Mobius square plus Kratzer potential. The energy spectrum and wave functions are obtained via the parametric Nikiforov-Uvarov (NU) method by assuming equal scalar and vector potential. The non relativistic limit is obtained and numerical results are presented. In addition, the energy eigenvalues are obtained for special cases of this potential. Our results show that energy decreases with the screening parameter.

Keywords

Main Subjects


[1] A.I. Ahmadov, S.M. Aslanova, M. Sh Orujova, Sh V. Badalov, Shi-Hai Dong, Approximate bound state solutions of the Klein-Gordon equation with the linear combination of Hulthén and Yukawa potentials, Physics Letters A 383, 24 2019, 3010-3017.
[2] A.D. Alhaidari, H.Bahlouli, A. Al-Hasan, Dirac and Klein–Gordon equations with equal scalar and vector potentials, Physics Letters A, 349(1-4) 2006, 87-97.
[3] P. Aspoukeh, S.M. Hamad, Bound state solution of the Klein-Gordon equation for vector and scalar Hellmann plus modified Kratzer potentials, Chinese Journal of Physics, 68 2020, 224-235.
[4] R.L.Greene, C. Aldrich, Variational wave functions for a screened Coulomb potential, Physical Review A, 14(6) 1976, 2363.
[5] H. Hassanabadi, B.H. Yazarloo, A.N. Ikot, N. Salehi, S. Zarrinkamr, Exact analytical versus numerical solutions of Schrödinger equation for Hua plus modified Eckart potential. Indian journal of Physics, 87 2013, 1219-1223.
[6] H. Hassanabadi, E. Maghsoodi, A.N. Ikot, S. Zarrinkamar, Approximate arbitrary-state solutions of Dirac equation for modified deformed Hylleraas and modified Eckart potentials by the NU method. Applied Mathematics and computation, 219(17) 2013, 9388-9398.
[7] A.N. Ikot, G.J. Rampho, P.O. Amadi, M.J. Sithole, U.S. Okorie, M.I. Lekala, Shannon entropy and Fisher information-theoretic measures for Mobius square potential, The European Physical Journal Plus, 135(6) 2020, 1-13.
[8] A.N. Ikot, B.H.Yazarloo, S. Zarrinkamar, H. Hassanabadi, Symmetry limits of (D+1)-dimensional Dirac equation with Möbius square potential, The European Physical Journal Plus, 129 2014, 1-10.
[9] C.S. Jia, T. Chen, S. He, Bound state solutions of the Klein-Gordon equation with the improved expression of the Manning–Rosen potential energy model, Physics Letters A, 377(9) 2013, 682-686.
[10] R.J. LeRoy, R.B. Bernstein, Dissociation energy and long‐range potential of diatomic molecules from vibrational spacings of higher levels, The Journal of Chemical Physics, 52(8) 1970, 3869-3879.
[11] S. Miraboutalebi, Solutions of Klein–Gordon equation with Mie-type potential via the Laplace transforms. The European Physical Journal Plus, 135(1) 2020, 16.
[12] A.F. Nikiforov, V.B. Uvarov, Special functions of mathematical physics, 205 1988.
[13] C.A. Onate, M.C. Onyeaju, A.N. Ikot, J.O. Ojonubah, Analytical solutions of the Klein-Gordon equation with a combined potential. Chinese Journal of Physics, 54(5) 2013, 820-829.
[14] C.A. Onate, O. Ebomwonyi, K.O. Dopamu, J.O. Okoro, M.O. Oluwayemi, Eigen solutions of the D-dimensional Schrӧdinger equation with inverse trigonometry scarf potential and Coulomb potential. Chinese journal of physics, 56(5) 2018, 2538-2546.
[15] C.P. Onyenegecha, U.M. Ukewuihe, A.I. Opara, C.B. Agbakwuru, C.J. Okereke, N.R. Ugochukwu, I.J. Njoku, Approximate solutions of Schrödinger equation for the Hua plus modified Eckart potential with the centrifugal term, The European Physical Journal Plus, 135(7) 2020, 1-10.
[16] C. Tezcan, R. Sever, A general approach for the exact solution of the Schrödinger equation, International Journal of Theoretical Physics, 48 2009, 337-350.
[17] R.C. Wang, C.Y. Wong, Finite-size effect in the Schwinger particle-production mechanism, Physical Review D, 38(1) 1988, 348.
[18] B.H. Yazarloo, H. Hassanabadi, S. Zarrinkamar, Oscillator strengths based on the Möbius square potential under Schrödinger equation, The European Physical Journal Plus, 127 2012, 1-11.
[19] F. Yasuk, A. Durmus, I. Boztosun, Exact analytical solution to the relativistic Klein-Gordon equation with noncentral equal scalar and vector potentials, Journal of mathematical physics, 47(8) 2006.