[1] O.A. Agbolade, T.A. Anake, Solution of First-Order Volterra Type Linear Integro Differential Equations by Collocation Method, J. Appl. Math., 2017.
[2] S. Almezel, Q.H. Ansari, M.A. Khamsi, Topics in fixed point theory, Springer International Publishing, Switzerland, 2014.
[3] Z.P. Atabakan, A.K Nasab, A. Kilicman, Z.K. Eshkuvatov, Numerical solution of nonlinear Fredhlom integro differential equations using Homotopy Analysis method, Math. Probl. Eng, 2013.
[4] V. Berinde, Iterative approximation of fixed points, Editura Efemeride, Baia Mare, Romania
[5] A. Borhanifar, Kh. Sadri, A new operational approach for numerical solution of generalized functional integro differential equations, J. Comput. Appl. Math., 279 2015, 80-96.
[6] P. Darania, K. Ivan, Numerical solution of nonlinear Volterra Fredholm integro differential equations, Comput. Math. Appl., 58 2008, 2197-2209.
[7] H.L. Dastjerdi, H.M.M. Ghaini, Numerical solution of Volterra fredholm integral equations by moving least square method and Chebyshev polynomial, Appl. Math. Model., 36 2012, 3281-3288.
[8] A.H. Hamoud, K.P. Ghadle, S.M.Atshan, The approximate solution of fractional integro differential equations by using modified Adomian decomposition method, Khayyam J. Maths, 5(1) 2019, 21-40.
[9] A.A. Hamoud, N.M. Mohammed, K.P. Ghadle, S.L. Dhondge, Solving Integro-Differential Equations by Using Numerical Techniques, International Journal of Applied Engineering Research, 14 2019, 3219-3225.
[10] A. Khani, M.M. Moghadam, S. Shahmorad, Approximate solution of system of nonlinear Volterra integro differential equations, Comput. Method Appl. Math., 8(1) 2008, 77-85.
[11] W.A. Kirk, B. Sims, Hand book of matrix fixed point theory, Kluwert Academic Publisher, 1st edition, 2001.
[12] D.A. Maturi, E.A.M. Simbawa, Tme modified decomposition method for solving Volterra Fredholm integro-differential equations using Maple, International Journal of GEOMATE, 18(67) 2020, 84-89.
[13] H.D.B. Mohammed, S.N. Jafar, G.A. Asghar, A novel method for solving nonlinear Volterra integro differential equations system, Abstr. Appl. Anal., 2018.
[14] R. Mohammed, R. Kamal, H. Adel, N. Mohmoud, Numerical solution of high order linear integro differential equations with variable coefficient using two proposed schemes for rational Chebyshev functions, NTMSCI, 4(3) 2016, 22-35.
[15] N.A. Mohamed, Z.A. Majid, Multistep Block Method for Solving Volterra Integro Differential Equations, Malays. J. Math. Sci., 10(8) 2016, 33-48.
[16] G. Mustapha, O. Yalcin, S. Mehmet, A new collocation method for solution of mixed linear integro differential difference equation, Appl. Math. Comput., 216 2010, 2183-2198.
[17] K. Parand, M. Nikarya, New numerical method based on generalized Bessel function to solve nonlinear Abel fractional differential equations of the first kind, Nonlinear Engineering, 8 2017, 438-448.
[18] J. Rahidinia, A. Tahmasebi, Taylor series method for the system of linear Volterra integro differential equations, TJMCS, 4(3) 2012, 331-343.
[19] M. Rahman, Integral Equations and their Applications, Southampton, Boston: WIT Press. 2007.
[20] S. Tate, V.V. Kharat, H.T. Dinde, On nonlinear mixed fractional integro differential equations with positive constant coefficients, Filomat, 33(19) 2019.
[21] W.F. Trench, Introduction To Real Analysis, Pearson Education, USA.
[22] S.G. Venkatesh, S.K. Ayyaswamy, S.R. Balachandar, K. Kannan, Wavelet solution for class of nonlinear integro differential equations, Indian Journal of Science and Technology, 6(6) 2013, 4670-4677.
[23] A. M. Wazwaz, Linear and nonlinear integral equations-methods and applications, Springer-Verlag Berlin Heidelberg, 2011.