[1] O.J. Abonyo, D. Malonza, Mathematical model for crimes in developing countries with some control strategies, Journal of Applied Mathematics, Article ID 8699882, 2023.
[2] J.I. Adenuga, K.B. Ajide, A.T. Odeleye, A.A. Ayoade, Abundant natural resources, ethnic diversity and inclusive growth in sub-Saharan Africa: a mathematical approach, Application and Applied Mathematics: An International Journal, 16(2) 2021, 1221-1247.
[3] D. Aldila, H. P. Paramartha, H. Tasman, An analysis of rumour spreading model with contra productive intervention, International Journal of Pure and Applied Mathematics, 112(3) 2017, 519-530.
[4] P.O. Aye, Stability analysis of mathematical model for the dynamics of diabetes mellitus and its complications in a population, Data Analytics and Applied Mathematics, 3(1) 2022, 20-27.
[5] A.A. Ayoade, P.I. Farayola, A mathematical modelling of economic restoration through agricultural revitalisation in Nigeria, Journal of Quality Measurement and Analysis, 17(1) 2021, 79-91.
[6] A. A. Ayoade, R. Folaranmi, T. Latunde, Mathematical analysis of the implication of the proposed rise in the retirement age on the unemployment situation in Nigeria, Athens Journal of Sciences, 7(1) 2020, 29-42.
[7] A.A. Ayoade, P.I. Farayola, A mathematical model to address out-of-school children menace for actualisation of sustainable development in Nigeria, Journal of Science and Arts, 22(3) 2022, 677-692.
[8] A. A. Ayoade, Integer and fractional order models for rabies: a theoretical approach, Mathematics and Computational Sciences, 3(1) 2022, 1-9.
[9] A.A. Ayoade, T. Oyedepo, S. Agunbiade, Mathematical modeling of Toxoplasma gondii between the environment and cat population under vaccination and sanitation, Journal of Fractional Calculus and Applications, 14(1) 2023, 75-87.
[10] O. Balatif, I. Abdelbaki, M. Rachik, Z. Rachik, Optimal control for multi-input bilinear systems with an application in cancer chemotherapy, International Journal of Scientific and Innovative Mathematical Research (IJSIMR), 3(2) 2015, 22-31.
[11] A. Boutayeb, E.H. Twizell, K. Achouayb, A. Chetouani, A mathematical model for the burden of diabetes and its complications, Biomedical Engineering Online, 3 2004, 20.
[12] A. Boutayeb, A. Kerfati, Mathematical models in diabetology modeling, Measurement and Control, C, AMSE, 44 1994, 53-63.
[13] A. Boutayeb, A. Chetouani, A. Achouyab, E. H. Twizell, A non-linear population model of diabetes mellitus, Journal of Applied Mathematics & Computing, 21(1-2) 2006, 127-139.
[14] M. Derouich, A. Boutayeb, W. Boutayeb, M. Lamlili, Optimal control approach to the dynamics of a population of diabetics, Applied Mathematical Sciences, 8(56) 2014, 2773-2782.
[15] A. Devi, R. Kalita, A. Ghosh, An interactive Glucose- Insulin regulation under the influence of Externally Ingested Glucose (G IG −I −E) model, Global Journal of Mathematical Sciences: Theory and Practical, 9(3) 2017, 277-285.
[16] J. Dhar, M. Tyagi, P. Sinha, The impact of media on a new product innovation diffusion: a mathematical model, Bol. Soc. Paran. Mat., 33(1) 2015, 171-182.
[17] L.M. Ellwein, H.T. Tran, C. Zapata, V. Novak, M.S. Olufsen, Sensitivity analysis and model assessment: mathematical models for arterial blood flow and blood pressure, Cardiovasc Eng., 8 2008, 94-108.
[18] J.Z.D. Hussain, A mathematical model for glucose-insulin intercation, Science Vision, 14(2)2014, 84-88.
[19] F. Nahayo, A. Bagorizamba, M. Bigirimana, I. Irakoze, Predictive mathematical and statistical modeling of the dynamic poverty problem in Burundi: case of an innovative economic optimization system, Open Journal of Optimization, 10 2021, 101-125.
[20] International Diabetes Federation (2014). IDF Diabetes Atlas, 6th Edition.
[21] A. Kouidere, A. Labzai, H. Ferjouchia, O. Balatif, M. Rachik, A new mathematical modeling with optimal control strategy for the dynamics of population of diabetics and its complications with effect of behavioral factors, Journal of Applied Mathematics, 2020.
[22] A. Kouidere, A. Labzai, A. Khajji, et al. Optimal control strategy with multi-delay in state and control variables of a discrete mathematical modeling for the dynamics of diabetic population, Communications in Mathematical Biology and Neuroscience, 13(2)2020, 72-88.
[23] A. Kouidere, O. Balatif, H. Ferjouchia, A. Boutayeb, M. Rachik, Optimal control strategy for a discrete time to the dynamics of a population of diabetics with highlighting the impact of living environment, Discrete Dynamics in Nature and Society, Article ID 6342169, 2019.
[24] B.O. Kwach, Mathematical model for detecting diabetes in the blood, Applied Mathematical Sciences, 5(6)2011, 279-286.
[25] G.C.E. Mbah, Mathematical modelling on diabetes mellitus Lambert Academic Publishing, 2011.
[26] R.L.M. Neilan, Optimal Control Applied to Population and Disease Models, PhD Thesis, University of Tennessee, Knoxville, 2009. Retrieved April 14, 2020.
[27] A. Nath, D. Deb, R. Dey, S. Das, Blood glucose regulation in type 1 diabetic patients: an adaptive parametric compensation control-based approach, IET Systems Biology, 12(5) 2018, 219-225.
[28] A.H. Permatasari, R.H. Tjahjana, T. Udjiani, Existence and characterization of optimal control in mathematics model of diabetics population, Journal of Physics: Conference Series, 983(2018) 2018, 012069.
[29] Sandhya K. Deepak, Mathematical model for glucose-insulin regulatory system of diabetes mellitus, Advances in Applied Mathematical Biosciences, 2(1) 2011, 39-46.
[30] A. Staines, H.J. Bodanshy, H.E.B. Lilley, C. Stephenson, R.J.Q. McNally, R.A. Cartwright, The epidemiology of diabetes mellitus in the United Kingdom, Diabetologia, 36 1993, 1282-1287.
[31] J. Wang, C. Modnak, Modeling cholera dynamics with controls, Canadian Applied Mathematics Quarterly, 9(3)2011, 255-273.
[32] P. Widyaningsih, R.C. Aan, D.R.C. Saputro, A mathematical model for the epidemiology of diabetes mellitus with lifestyle and genetic factors, Journal of Physics: Conference series, 1028(2018) 2018, 012110.
[33] World Health Organisation (2020). Diabetes. https://www.who.int/health-topics/diabetes.
[34] R. Yadav, R. Maya, A mathematical model for the study of diabetes mellitus , Journal of Physics: Conference Series, 1531(2020) 2020, 012078.
[35] D. Zadeng, Mathematical Modelling of Diabetes Mellitus, PhD Thesis, Mizoram University, Aizawl, 2014.