[1] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables (Dover Publications) 1972.
[2] A. Arda, R. Sever, Exact solutions of the Schrödinger equation via Laplace transform approach: pseudoharmonic potential and Mie-type potentials, Journal of Mathematical Chemistry, 50 2012, 971-980.
[3] C. Berkdemir, Pseudospin symmetry in the relativistic Morse potential including the spin–orbit coupling term, Nuclear Physics A, 770(1-2) 2006, 32-39.
[4] R.C. Barret, Y. Nedjadi, Meson-nuclear interactions in the Duffin-Kemmer-Petiau formalism, Nuclear Physics A, 585(1) 1995, 311-312.
[5] T.R. Cardoso, L.B. Castro, A.S. de Castro, On the nonminimal vector coupling in the Duffin–Kemmer–Petiau theory and the confinement of massive bosons by a linear potential, Journal of Physics A: Mathematical and Theoretical, 43(5) 2010, 055306.
[6] L.B. Castro, Quantum dynamics of scalar bosons in a cosmic string background, The European Physical Journal C, 75(6) 2015, 287.
[7] Y. Chargui, A. Dhahbi, An extended version of the spin-one Duffin–Kemmer–Petiau oscillator, Physica Scripta 96(7) 2021, 075003.
[8] L.B. Castro, Luiz P. de Oliveira, Remarks on the Spin-One Duffin-Kemmer-Petiau Equation in the Presence of Nonminimal Vector Interactions in Dimensions, Advances in High Energy Physics 2014
[9] R.J. Duffin, On the characteristic matrices of covariant systems, Physical Review, 54(12) 1938, 1114.
[10] B. Hamil, B.C. Lütfüoğlu, H. Aounallah, The spin-one DKP equation with a nonminimal vector interaction in the presence of minimal uncertainty in momentum, Modern Physics Letters A, 36(4) 2021, 2150021.
[11] N. Kemmer, Quantum theory of Einstein-Bose particles and nuclear interaction, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 166(924) 1938, 127-153.
[12] M. de Montigny, E.S. Santos, On the Galilean Duffin-Kemmer-Petiau equation in arbitrary dimensions, International Journal of Modern Physics A, 35(18) 2020, 2050086.
][13] H.F. Nogueira, A.S. de Castro, D.R.M. Pimentel, A large class of bound-state solutions of the Schrödinger equation via Laplace transform of the confluent hypergeometric equation, Journal of Mathematical Chemistry, 54 2016, 1287-1295.
[14] Y. Nedjadi, R.C. Barret, Solution of the central field problem for a Duffin–Kemmer–Petiau vector boson, Journal of Mathematical Physics, 35(9) 1994, 4517-4533
[15] S. Ortakaya, Pseudospin symmetry in position-dependent mass dirac-coulomb problem by using laplace transform and convolution integral, Few-Body Systems, 54(11) 2013, 2073-2080.
[16] G. Petiau, University of Paris thesis, published in Academie Royale de Medecine de Belgique, Classe des Sciences, Memoires in 80 (16) 1936.
[17] K. Sogut et al Creation of vector bosons by an electric field in curved spacetime, Annals of Physics, 343, 2014, 40-48.
[18] H. Sobhani, H. Hassanabadi, W.S. Chung, Study of Spin-1 Particles Scattering and Bound States in the q-Deformed Quantum Mechanics, Few-Body Systems, 61 2020, 1-12.
[19] C.D. White, The Cornell potential from general geometries in AdS/QCD, Physics Letters B, 652(2-3) 2007, 79-85.
[20] Ch. Y. Wong, Molecular states of heavy quark mesons, Physical Review C, 69(5) 2004, 055202.