Approximate solutions of Schrodinger equation in D Dimensions with the modified Mobius square plus Hulthen potential

Document Type : Original Article

Authors

1 Federal University of Technology, Owerri

2 Department of Physics, Faculty of Sciences, Federal University of Technology Owerri, Nigeria.

3 Department of Physics, Faculty of Sciences, Federal University of Technology Owerri, Nigeria

4 Physics, Faculty of Sciences, Alvan Ikoku Federal College of Education Owerri, Nigeria.

Abstract

The study presents the approximate solutions of Schrodinger equation in D-dimensions with the modified Mobius square plus Hulthen potential. The energy eigenvalues and corresponding wave functions are obtained using the Nikiforov-Uvarov (NU) method. Special cases of this potential are reported. Numerical results are also computed.

Keywords


[1] O. Adebimpe, C.A. Onate, S.O. Salawu, A. Abolanriwa, A.F. Lukman, Eigensolutions, scattering phase shift and
thermodynamic properties of Hulthen-Yukawa potential, Results in Physics, 14 2019, 102409.
[2] A.L. Ahmadov, S.M. Aslanova, M.Sh. Orujova, S.V. Badalov, S.H. Dong, Approximate bound state solutions of the Klein-
Gordon equation with the linear combination of Hulthén and Yukawa potentials, Physics Letters A, 383(24) 2019, 3010-
3017.
[3] A. Arda, R. Sever, Exact solutions of the Morse-like potential, step-up and step-down operators via Laplace transform
approach, Commun, Communications in Theoretical Physics, 58(1) 2012, 27.
[4] O. Bayrak, I. Boztosun, H. Ciftci, Exact Analytical Solutions to the Kratzer Potential by the Asymptotic Iteration Method,
International Journal of Quantum Chemistry, 107(3) 2007, 540-544.
[5] W.G. Feng, C.W. Li, W.H. Ying, Y.Y. Li, The scattering states of the generalized Hulthén potential with an improved new
approximate scheme for the centrifugal term, Chinese Physics B, 18(9) 2009, 3663.
[6] J. Gao, M.C. Zhang, Characteristics of droplets ejected from liquid glycerol doped with carbon in laser ablation propulsion,
Chin. Phys. Lett., 33 2016, 010308.
[7] R.L. Greene, C. Aldrich, Variational wave functions for a screened Coulomb potential, Physical Review A, 14(6) 1976,
2363.
[8] A. Hassanabadi, A.N. Ikot, C.P. Onyenegecha, S. Zarrinkamar, Approximate bound and scattering solutions of Dirac
equation for the modified deformed Hylleraas potential with a Yukawa-type tensor interaction, Indian Journal of Physics,
91(9) 2017, 1103-1113.
[9] A. Hassanabdi, B.H. Yazarloo, S. S. Zarrinkamar, H. rahimov, Spin and Pseudospin Symmetries of Dirac Equation and the
Yukawa Potential as the Tensor Interaction, Communications in Theoretical Physics, 58(6) 2012, 807.
[10] S.M. Ikhdair, An improved approximation scheme for the centrifugal term and the Hulthén potential, The European Physical Journal A, 39(3) 2009, 307-314.
[11] S.M. Ikhdair, R. Sever, Nonrelativistic quark–antiquark potential: spectroscopy of heavy-quarkonia and exotic susy quarkonia, International Journal of Modern Physics A, 24(28) 2009, 5341-5362.
[12] A.N. Ikot, G.J. Rampho, P. O. Amadi, M. J. Sithole, U. S. Okorie, M. I. Lekala, Shannon entropy and Fisher information-theoretic measures for Mobius square potential, The European Physical Journal Plus, 135(6) 2020, 1-13.
[13] A.N. Ikot, O.A. Awoga, H. Hassanabadi, E. Maghsoodi, Analytical approximation solution of Schrodinger equation in D Dimensions with Quadratic exponential type potential for arbitratry l-state, Communications in Theoretical Physics, 61(4) 2014, 457.
[14] A.N. Ikot, S. Zarrinkamar, E.J. Ibanga, E. Maghsoodi, H. Hassanabadi, Pseudospin symmetry of the Dirac equation for a Möbius square plus Mie type potential with a Coulomb-like tensor interaction via SUSYQM, Chinese Physics C, 38(1) 2014, 013101.
[15] E. Maghsoodi, H. Hassanabadi, H. Rahimov, S. Zarrinkamar, Arbitrary-state solutions of the Dirac equation for a Möbius square potential using the Nikiforov-Uvarov method, Chinese Physics C, 37(4) 2013, 043105.
[16] L. Mathe, C.P. Onyenegecha, A.A. Farcas, L.M. Pioras- Timbolmas, M. Solaimani, H. Hassanabadi, Linear and nonlinear optical properties in spherical quantum dots: Inversely quadratic Hellmann potential, Physics Letters A, 397 2021, 127262.
[17] A.F. Nikiforov, V.B. Uvarov, Special functions of mathematical physics, Springer, 1988.
[18] A. Niknam, A.A. Rajabi, M. Solaimani, Solutions of D-dimensional Schrodinger equation for Woods– Saxon potential with spin-orbit, coulomb and centrifugal terms through a new hybrid numerical fitting Nikiforov–Uvarov method, Journal of Theoretical and Applied Physics, 10(1) 2016, 53-59.
[19] C.P. Onyenegecha, C.A. Onate, O.K. Echendu, A.A. Ibe, H. Hassanabadi, Solutions of Schrodinger equation for the modified Mobius square plus Kratzer potential, The European Physical Journal Plus, 135(3) 2020, 1-9.
[20] C.P. Onyenegecha, U.M. Ukewuihe, A.I. Opara, C.B. Agbakwuru, C.J. Okereke, N.R. Ugochukwu, S.A. Okolie, I.J. Njoku, Approximate solutions of Schrodinger equation for the Hua plus modified Eckart potential with the Centrifugal term, The European Physical Journal Plus, 135(7) 2020, 1-10.
[21] C.P. Oyewumi, O.J. Oluwadare, the scattering phase shifts of the Hulthén-type potential plus Yukawa potential, The European Physical Journal Plus, 131(9) 2016, 1-10.
Volume 2, Issue 2
May 2021
Pages 1-15
  • Receive Date: 19 March 2021
  • Revise Date: 20 April 2021
  • Accept Date: 21 April 2021
  • First Publish Date: 01 May 2021