[1] W.F. Ames, Numerical Methods for Partial Differential Equations, 3Ed, Academic Press, 1992.
[2] G. Bester, A. Zunger, Cylindrically shaped zinc-blende semiconductor quantum dots do not have cylindrical symmetry: Atomistic symmetry, atomic relaxation, and piezoelectric effects, Physical Review B, 71(4) 2005, 045318.
[3] C. Bose, Binding energy of impurity states in spherical quantum dots with parabolic confinement, Journal of Applied Physics, 83(6) 1998, 3089-3091.
[4] D. Braess, Finite Elements, Theory, Fast Solvers, and Applications in Elasticity Theory, Cambridge Univ. Press, 2007.
[5] S. Brenner, R. Scott, The Mathematical Theory of Finite Element Methods, Springer, 2007.
[6] P.K. Chattopadhyay, Mathematical Physics, New Age Int. (P) Ltd., 1990.
[7] D.M. Cunha, F.L. Souza, Facile synthetic route for producing one-dimensional zinc oxide nanoflowers and characterization of their optical properties, Journal of Alloys and Compounds, 577 2013, 158-164.
[8] A. Deyasi, S. Bhattacharyya, N.R. Das, Computation of intersubband transition energy in normal and inverted core-shell quantum dots using finite difference technique, Superlattices and Microstructures, 60 2013, 414-425.
[9] M. El-Said, Spectroscopic structure of two interacting electrons in a quantum dot by the shifted 1/N expansion method, Physical Review B, 61(19) 2000, 13026.
[10] T.F. Fang, S.J. Wang, Cross correlations and shot noise in a Y-shaped quantum dot, Journal of Physics: Condensed Matter, 19(2) 2006, 026204.
[11] B.A. Finlayson, The Method of Weighted Residuals and Variational Principles, with application in fluid mechanics, heat and mass transfer, Academic Press, 1972.
[12] T. García, Francisco Manuel Gómez-Campos, and Salvador Rodríguez-Bolívar, Influence on miniband structure of size variations in regimented InAs/GaAs quantum dots arrays, Journal of Applied Physics, 114 2013, 064311.
[13] M. Ghorbani, Diffuse Element Kansa Method, Applied Mathematical Sciences, 4(12) 2010, 583-594.
[14] V. Golubnychiy, H. Baumgartner, M. Bonitz, A. Filinov and H. Fehske, Screened Coulomb balls-structural properties and melting behavior, Journal of Physics A: Mathematical and General, 39(17) 2006, 4527.
[15] M. Governale, M. Macucci, G. Iannaccone, C. Ungarelli, and J. Martorell, Modeling and manufacturability assessment of bistable quantum-dot cells Journal of applied physics, 85(5) 1999, 2962-2971.
[16] A.D. Gu¨c¸lu¨, Q.F. Sun, H. Guo, R. Harris, Geometric blockade in a quantum dot: Transport properties by exact diagonalization, Physical Review B, 66(19) 2002, 195327.
[17] A.D. Güçlü, C.J. Umrigar, Maximum-density droplet to lower-density droplet transition in quantum dots, Physical Review B 72(4) 2005, 045309.
[18] T.M. Hwang, W. Wei Lin, W.C. Wang, Weichung Wang, Numerical simulation of three dimensional pyramid quantum dot, Journal of Computational Physics, 196(1) 2004, 208.
[19] S.M. Ikhdair, M. Hamzavi, A quantum pseudodot system with two-dimensional pseudoharmonic oscillator in external magnetic and Aharonov-Bohm fields, Physica B: Condensed Matter, 407(21) 2012, 4198-4207.
[20] R. Khordad, H. Bahramiyan, Impurity position effect on optical properties of various quantum dots, Physica E: Low-dimensional Systems and Nanostructures, 66 2015, 107-115.
[21] Y.J. Kim, J. Yoo, B.H. Kwon, Y.J. Hong, C.H. Lee and G.C. Yi, Position-controlled ZnO nanoflower arrays grown on glass substrates for electron emitter application, Nanotechnology 19(31) 2008, 315202.
[22] M. Mardaania, A. Shokri, K. Esfarjani, Analytical results on coherent conductance in a general periodic quantum dot: Transfer matrix method, Physica E: Low-dimensional Systems and Nanostructures, 28(2) 2005, 150-161.
[23] J.T. Marti, Introduction to Sobolev spaces and finite element solution of elliptic boundary value problems, Academic Press, 1986.
[24] R.V.N. Melnik, M. Willatzen, Bandstructures of conical quantum dots with wetting layers, Nanotechnology, 15(1) 2004.
[25] A.R. Mitchell, R. Wait, Finite Element Analysis and Applications, John Wiley, 1985.
[26] M.A. Naser, M.J. Deen, D.A. Thompson, Spectral function and responsivity of resonant tunneling and superlattice quantum dot infrared photodetectors using Green’s function, Journal of Applied Physics, 102(8) 2007, 083108.
[27] A.V. Nenashev, and A. V. Dvurechenskii, Variational method of energy level calculation in pyramidal quantum dots, Journal of Applied Physics, 127(15) 2020, 154301.
[28] S. Nomura, Y. Aoyagi, Density of states of a quantum dot array probed by photoluminescence spectra, Surface science, 529(1-2) 2003, 171-179.
[29] J.N. Reddy, An Introduction to the Finite Element Method, Mc Graw-Hill, 2005.
[30] A.H. Rodrıguez, H.Y. Ramırez, Analytical calculation of eigen-energies for lens-shaped quantum dot with finite barriers, The European Physical Journal B, 66(2) 2008, 235-238.
[31] E. Sadeghi, F. Vahdatnejad, M. Moradi LM, Effect of polarization charges on impurity binding energy in elliptical quantum wire, Superlattices and Microstructures, 58 2013, 165-170.
[32] V.A. Shuvayev, L.I. Deych, I.V. Ponomarev, A.A. Lisyansky, Self-consistent Hartree method for calculations of exciton binding energy in quantum wells, Superlattices and Microstructures, 40(2) 2006, 77-92.
[33] P. Solín, Partial Differential Equations and the Finite Element Method, 2005, John Wiley & Sons.
[34] L. Song, A. Lukianov, D. Butenko, H. Li, J. Zhang, M. Feng, L. Liu, D. Chen and N.I. Klyui, Facile Synthesis of Hierarchical Tin Oxide Nanoflowers with Ultra-High Methanol Gas Sensing at Low Working Temperature, Nanoscale Research Letters, 14(1) 2019, 1-11.
[35] O. Stier, M. Grundmann, D. Bimberg, Electronic and optical properties of strained quantum dots modeled by 8-band k.p theory, Physical Review B, 59(8) 1999, 5688.
[36] R. Wei, W. Xie, Optical absorption of a hydrogenic impurity in a disc-shaped quantum dot, Current Applied Physics, 10(3) 2010, 757-760.
[37] B.H. Wu, J.C. Cao, Interference of conductance and shot noise properties of photon-assisted transport through a T-shaped double quantum dot, Physical Review B, 73(20) 2006, 205318.
[38] G. Zhou and Y. Li, Electromagnetic-field-induced resonant structures for an open rectangular quantum dot, The European Physical Journal B-Condensed Matter and Complex Systems, 46(1) 2005, 127-132.