[1] H.I. Ahmadov, E.A. Dadashov, N.Sh. Huseynova, V.H. Badalov, Generalized tanh-shaped hyperbolic potential: bound state solution of Schrödinger equation, Eur. Phys. J. Plus 136 (2) 2021, 1-12.
[2] H.I. Ahmadov, M.V. Qocayeva, N.Sh. Huseynova, The bound state solutions of the D-dimensional Schrödinger equation for the Hulthén potential within SUSY quantum mechanics, Int. J. Mod. Phys E, 26 (5) 2017, 1750028.
[3] H.I. Ahmadov, C. Aydin, N.SH. Huseynova, O. Uzun, Analytical solutions of the Schrödinger equation with the manning–rosen potential plus a ring-shaped-like potential, Int. J. Mod. Phys. E 22 (10) 2013, 1350072.
[4] A.I. Ahmadov, M. Demirci, S.M. Aslanova, M.F. Mustamin, Arbitrary ℓ-state solutions of the Klein-Gordon equation with the Manning-Rosen plus a Class of Yukawa potentials, Phys. Lett. A, 384 (12) 2020, 126372.
[5] A.I. Ahmadov, S.M. Aslanova, M.Sh. Orujova, S.V. Badalov, S.H. Dong, Approximate bound state solutions of the Klein-Gordon equation with the linear combination of Hulthén and Yukawa potentials, Phys. Lett. A, 383 (24) 2019, 3010-317.
[7] D. Agboola, Schrödinger Equation with Hulthén Potential Plus Ring-Shaped Potential, Comm. Theor. Phys. 55(6) 2011, 972.
[8] A.I. Ahmadov, V.H. Badalov, H.I .Ahmadov, Analytical solutions of the Schroedinger equation with the Woods–Saxon potential for arbitrary l state, Int. J. Mod. Phys E, 18 (3) 2009, 631-641.
[9] H.I. Ahmadov, Sh.I. Jafarzade, M.V. Qocayeva, Analytical solutions of the Schrödinger equation for the Hulthén potential within SUSY quantum mechanics, Int. J. Mod. Phys. A 30 (32) 2015, 1550193.
[10] P. Boonserm, M. Visser, Quasi-normal frequencies: key analytical results, 2011, arxiv:1005.4483v3.
[11] J. Cai, P. Cai, A. Inomata, Path-integral treatment of the Hulthén potential, Phys. Rev. A 34 (6) 1986, 4621.
[12] F. Cooper, A. Kahare, U. Sukhatme, Supersymmetry and Quantum Mechanics, Phys. Rept. 251(5-6) 1995, 267-385.
[13] A. Cimas, M. Aschi, C. Barrientos, V.M. Rayon, J.A. Sardo, A. Largo, Computational study on the kinetics of the reaction of N(4S) with CH 2F, Chem. Phys. Lett. 374 (5) 2003, 594-600.
[14] S.H. Dong, Factorization Method in Quantum Mechanics, Springer, Netherlands, 2007, ISBN-13 978-1-4020-5795-3 (HB) ISBN-13 978-1-4020-5796-0 (e-book).
[16] S.H. Dong, XY. GU, Arbitrary l state solutions of the Schrödinger equation with the Deng-Fan molecular potential, J. Phys. Conf. Series 96(1) 2008, 012109.
[17] M. Eshghi, H. Mehraban, S.M. Ikhdair, The relativistic bound states of a non-central potential, Pram. J. Phys. 88(4) 2017, 1-10.
[20] B.J. Falaye, S.M. Ikhdair, M. Hamzavi, Formula Method for Bound State Problems, Few-Body Syst., 56(1) 2015, 63-78.
[21] B.J. Falaye, Any ℓ-state solutions of the Eckart potential via asymptotic iteration method, Cent. Eur. J. Phys. 10(4) 2012, 960-965.
[22]
B.J. Falaye, Any ℓ-state solutions of the Eckart potential via asymptotic iteration method, Cent. Eur. J. Phys. 10(4) 2012, 960-965.
[23] J. Gao, M.C. Zhang, Analytical Solutions to the D-Dimensional Schrödinger Equation with the Eckart Potential, Chin. Phys. Lett. 33(1) 2016, 010303.
[24] R.L. Greene, C. Aldrich, Variational Wave Functions for a Screened Coulomb Potential, Phys. Rev. A 14(6) 1976, 2363-2366.
[25] H. Hassanabadi, B. H.Yazarloo, S. Zarrinkamar, Bound states and the oscillator strengths for the Klein-Gordon equation under Möbius square potential, Turk. J. Phys. 37(2) 2013, 268-274.
[26] M. Hamzavi, A.A. Rajabi, H. Hassanabadi, The rotation–vibration spectrum of diatomic molecules with the Tietz–Hua rotating oscillator and approximation scheme to the centrifugal term, Mol. Phys. 110(7) 2012, 389-393.
[27] E.P. Inyang, I.O. Akpan, J.E. Ntibi, E.S. William, Analytical Solutions of the Schrödinger Equation with Class of Yukawa Potential for a Quarkonium System Via Series Expansion Method, Eur. J. Appl. Phys. 2(6) 2020.
[28] B.I. Ita, H. Louis, O.U. Akakuru, N.A. Nzeata-Ibe, A.I. Ikeuba, T.O. Magu, P.I. Amos, C.O. Edet,
Approximate Solution to the Schrödinger Equation with Manning-Rosen plus a Class of Yukawa Potential via WKBJ Approximation Method, Bulg. J. Phys. 45 2018, 323.
[29] E.P. Inyang, E.S. William, J.A. Obu. Eigensolutions of the N-dimensional Schrödinger equation ìnteracting with Varshni-Hulthen potential model, Rev. Mexi. Fisi. 67 2021, 193.
[30] AN. Ikot, B.H. Yazarloo, S. Zarrinkamar, H. Hassanabadi, Symmetry limits of (D+1)-dimensional Dirac equation with Möbius square potential, Eur. Phys. J. Plus, 129 (79) 2014.
[31] L.D. Landau, E.M. Lifshitz, Quantum Mechanics-Non-Relativistic Theory, Pergamon, Oxford, 1977.
[32]
M. G. Miranda, G.H. Sun,
S.H. Dong, The solution of the second pöschlteller like potential by nikiforov-uvarov method, Intl. J. Mod. Phys. E 19(1) 2010, 123-129.
[33] A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics, Birkhauser, Basel, 1988.
[35] C.A. Onate, M.C. Onyeaju, A.N. Ikot, J.O. Ojonubah, Analytical solutions of the Klein–Gordon equation with a combined potential, Chin. J. Phys. 54 (5) 2016, 820-829.
[36] C.P. Onyenegecha, C.A. Onate, O.K. Echendu, A.A. Ibe, H. Hassanabadi, Solutions of Schrodinger equation for the modified Mobius square plus Kratzer potential, Eur. Phys. J. Plus 135 (3) 2020, 1-9.
[37] C.P. Onyenegecha, A.I. Opara, I.J. Njoku, S.C. Udensi, U.M. Ukewuihe, C.J. Okereke, A. Omame,
Analytical solutions of D-dimensional Klein–Gordon equation with modified Mobius squared potential, Res. Phys. 25, 2021, 104144
[38]
W.C. Qiang, S. H. Dong, Analytical Approximation to the Solutions of the Manning-Rosen Potential with Centrifugal Term, Phys. Letts. A 368 (1-2) 2007, 13-17.
[39] L.I. Schiff, Quantum Mechanics, 3rd edition, McGraw-Hill, New York, 1955, 306.
[40] A. Suparmi, C. Cari, S. Faniandari, Eigen solutions of the Schrodinger equation with variable mass under the influence of the linear combination of modified Woods-Saxon and Eckart potentials in toroidal coordinate, Mol. Phys. 118 (3) 2020, 1-9.
[41] F. Taskin, G. Kocak, Approximate solutions of Schrödinger equation for Eckart potential with centrifugal term, Chin. Phys. B, 19(9) 2010, 090314.
[42] C. Tezcan, R. Sever, A General Approach for the Exact Solution of the Schrödinger Equation, Int. J. Theor. Phys. 48 2009, 337-350.
[43] F. Taskin, G. Kocak, Approximate solutions of Schrödinger equation for Eckart potential with centrifugal term, Chin. Phys. B, 19(9) 2010, 090314.
[44] J.J. Weiss, Mechanism of Proton Transfer in Acid-Base Reactions, J. Chem. Phys. 41(4) 1964, 1120-1124.
[45] B.H. Yazarloo, H. Hassanabadi, S. Zarrinkamar, Oscillator strengths based on the Möbius square potential under Schrödinger equation, European Physical Journal Plus, 127(5) 2012, 1-11.
[46] S. Zarrinkamar, H. Panahi, M. Rezaci, M. Baradaran, Dirac Equation for Scalar, Vector and Tensor Generalized Cornell Interaction. Few-Body Systems, 57(2) 2016, 109-120.