[1] A. Aldroubi, U.C. Molter, Wavelets on irregular grids with arbitrary dilation matrices and frame atoms for 12(rd), Appl. Comput. Harmon. Anal., 17(2) 2004, 119-140.
[2] M.S. Asgari, A. Khosravi, Frames and bases of subspaces in Hilbert spaces, J. Math. Anal. Appl, 308(2) 2005, 541-553.
[3] J. Cahill, X. Chen, A note on scalable frames, Proc. Int. Conf. Appl. 2013 93-96.
[4] P.G. Casazza, X. Chen, Frame scalings: A condition number approach, Linear Algebra Appl, 523 2017, 152-168.
[5] P.G. Casazza, G. Kutyniok, Finite Frames, Theory and Applications, Appl. Numer. Harmon. Anal, Birkh auser 2013, New York.
[6] P.G. Casazza, G. Kutyniok, Frames of subspaces. Contemp. Math, 345 2004, 87-113.
[7] P. G. Casazza, G. Kutyniok, S. Li, Fusion frames and distributed processing, Appl. Comput. Harmon. Anal, 25(1) 2008, 114-132.
[8] P.G. Casazza, R.G. Lynch, Weaving properties of Hilbert space frames, Proc. SampTA. 110-114(2015).
[9] O. Christensen, An Introduction to Frames and Riesz Bases, 2nd edn. Birkh¨ auser 2016, Boston.
[10] J.B. Conway, A Course in Functional Analysis, 2nd edn. Springer, New York 1990.
[11] I. Daubechies, A. Grossmann, Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys, 27 1986, 1271-1286.
[12] R.J. Duffin, A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Sco. 72 1952,
341-366.
[13] A. Khosravi,M.S. Asgari, Frames and bases in tensor product of Hilbert spaces. J. Intern. Math, 4(6) 2003,527-537.
[14] A. Khosravi, M.M. Azandaryani, Approximate duality of g-frames in Hilbert spaces, Acta Math. Sci, 34(3) 2014, 639-652.
[15] A. Khosravi, K. Musazadeh, Fusion frames and g-frames, J. Math. Anal. Appl, 342(2) 2008, 1068-1083.
[16] G. Kutyniok, K. Okoudjou, F. Philipp, E. Tuley, Scalable Frames, J. Linear Algebra. Appl. 438 2013, 2225-2238.
[17] G. Kutyniok, K.A. Okoudjou, F. Philipp, Scalable frames and convex geometry, Contemp. Math, 626 2014, 19-32.
[18] W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl, 322(1) 2006, 437-45