[1] G. Adomian, R. Rach, On the solution of nonlinear differential equations with convolution product nonlinearities. Journal of Mathematics Analysis and Applications, 114(1) 1986, 171-175.
[2] G. Adomian, Solving frontier problem of Physics: The decomposition method, Kluwer Academic Publishers, Boston, MA 1994.
[3] Y. Aygar, E. Bairamov, Series Expansion, Asymptotic Behavior and Computation of the Values of the Schwarzschild-Milne Integrals Arising in a Radiative Transfer, Appl. Comput. Math., 20(2) 2021, 236-246.
[4] Chriscella Jalius, Zamariah Abdul Majid. Numerical solution of second order Fredholm integro-differential equations with Boundary conditions by Quadrature-difference method. Hindawi Journal of Applied Mathematics, 2, Article ID 2645097, 2017, 1–5.
[5] A. Gollbabai, M.A. Javidi, numerical approach for solving two-dimensional linear and non-linear Volterra-Fredholm integral equations. Appl. Math. Comput. 190(2) 2007, 1053-1061.
[6] C.H. Gu, H.S. Hu, Z.X. Zhou, Darboux transformation in solitons theory and geometry application., Shanghai Science Technology Press, Shanghai, 1994.
[7] R. Hirota, Direct methods in solition theory, Springer, Berlin, 1980.
[8] D.A. Juraev, A. Shokri, D. Marian, On an approximate solution of the Cauchy problem for systems of equations of elliptic type of the first order. Entropy, 24(7) 2022, 1-18.
[9] K. Kareem, M. Olayiwola, A. Oladapo, A. Yunus, K. Adedokun, I. Alaje,, On the solution of Volterra integro differential equations using a modified Adomian decomposition method, Jambura Journal of Mathematics, 5(1) 2023. 133-138.
[10] A. U. Keskin, Adomoian Decomposition Method (ADM), Boundary Value Problems for Engineers, 2019, 311-359.
[11] D. Marian, S.A. Ciplea, N. Lungu, On Ulam–Hyers stability for a system of partial differential equations of first order, Symmetry 2020, 12, 1060.
[12] F. Mohd-Karim, Mahathir Mohamad, Mohd Saifullah Rusiman, Norziha Che-Him, Rozaini Roslam, Kamil Khalid, Adomian Decomposition method for solving linear second order Fredholm integro-differential equations, Journal of Physics: Conference Series, 2018, 995 012009.
[13] H.K. Musaev, The Cauchy problem for degenerate parabolic convolution equation, TWMS J. Pure Appl. Math., 12(2) 2021, 278- 288.
[14] M.O. Olayiwola, K. O. Kareem, Efficient Decomposition Method for Integro differential Equations. J. Math. Comput. Sci., 2022, 1-15.
[15] P.J. Oliver, Application of Lie group to differential equation. Springer, 1986. New York.
[16] P.S Pankov, Z. K. Zheentaeva, T. Shirinov, Asymptotic reduction of solution space dimension for dynamical systems, TWMS J. Pure Appl. Math., 12(2) 2021, 243-253.
[17] Rohul Amin, Ibrahim Mahariq, Kamal Shah, Muhammad Awais, Fahim El-Sayed, Numerical Solution of the Second Order Linear and Non-Linear Integro-Differential Equations using Haar Wavelet Method, Arab Journal of Basic and Applied Sciences, 28(1) 2021, 11–19.
[18] J.C. Rosales, M.B. Branco. Algorithms for Calculating the Set of Integers Contained in a Monoid Finitely Generated by Positive Rational Numbers, Appl. Comput. Math., 20(3) 2021, 381-389.
[19] A. Shokri, H. Saadat, A.R, Khodadadi, A new high Order closed Newton-Cotes trigonometrically fitted formulae for the numerical solution of the Schrödinger equation, Iran. J. Math. Sci. Inform., 13(1) 2018, 111-129.
[20] A. Shokri, H. Saadat, A.R. Khodadadi, A new high order closed Newton-Cotes trigonometrically fitted formulae for the numerical solution of the Schorodinger equation, Iran J. Math. Sci. Inform, 13(1) 2018, 111 – 129.
[21] J. Sunday, A. Shokri, J.A. Kwanamu, K. Nonlaopon, Numerical integration of stiff differential systems using non-fixed step-size strategy. Symmetry, 14(8) 2022, 1575.
[22] J. Sunday, A. Shokri, R.O. Akinola, K.V. Joshua, K. Nonlaopon, A convergence-preserving non-standard finite difference scheme for the solutions of singular Lane-Emden equations, Results in Physics, 42 2022, 106031.
[23] A.M. Wazwaz, S.M. El-Sayed, A new modification of Adomian decomposition for linear and nonlinear operators, Applied Mathematics and Computation, 122(3) 2001, 393-405.