Ehrenfest's theorem for the Dirac equation in noncommutative Phase-Space

Document Type : Original Article


Laboratoire de Physique Mathématique et de Physique Subatomique (LPMPS), Université Frères Mentouri, Constantine 25000, Algeria.


In this article, we investigate Ehrenfest's theorem from the Dirac equation in a noncommutative phase-space where we calculate the time derivative of the position and the kinetic momentum operators for Dirac particles in interaction with electromagnetic field and within a noncommutative setting. This allows examining the effect of the phase-space noncommutativity on Ehrenfest's theorem. Knowing that with both the linear Bopp-Shift and ⋆product, the noncommutativity is inserted.


Main Subjects

[1] R. Alicki, Search for a border between classical and quantum worlds, Phys. Rev. A, 65(3) 2002, 034104(1-4).
[2] N. Bohr, Über die Serienspektra der Elemente. Z. Physik, 2 1920, 423-469.
[3] A.O. Bolivar. Classical limit of fermions in phase space. J. Math. Phys, 42(9) 2001, 4020-4030.
[4] M. Chaichian, M.M. Sheikh-Jabbari, A. Tureanu. Hydrogen Atom Spectrum and the Lamb Shift in Noncommutative QED. Phys. Rev. Lett, 86(13) 2001, 2716-2719.
[5] P. Ehrenfest, Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik. Z. Physik, 45 1927 455-457.
[6] G. Friesecke, M. Koppen. On the Ehrenfest theorem of quantum mechanics. J. Math. Phys, 50 2009, 082102(1-6).
[7] D.M. Gingrich. Noncommutative geometry inspired black holes in higher dimensions at the LHC. J. High. Energy. Phys, 2010(05) 2010, 0-22.
[8] L. Gouba. A comparative review of four formulations of noncommutative quantum mechanics. Int. J. Mod. Phys. A, 31(19) 2016, 1630025(1-15).
[9] J.M. Gracia-Bondia. Notes on Quantum Gravity and Noncommutative Geometry: New Paths Towards Quantum Gravity. Springer, Berlin, Heidelberg, 2010.
[10] R.W. Greenberg, A. Klein, C.T. Li. Invariant tori and Heisenberg matrix mechanics: a new window on the quantum-classical correspondence. Phys. Rep, 264(1-5) 1996, 167-181.
[11] I. Haouam, L. Chetouani, The Foldy-Wouthuysen transformation of the Dirac equation in noncommutative phase-space. J. Mod. Phys, 9 2018, 2021-2034.
[12] I. Haouam, Foldy–Wouthuysen Transformation of Noncommutative Dirac Equation in the Presence of Minimal Uncertainty in Momentum. Few-Body. Syst, 64 2023, 9(2-14).
[13] I. Haouam, On the noncommutative geometry in quantum mechanics. J. Phys. Stud, 24(2) 2020, 2002(1-10).
[14] I. Haouam, Two-dimensional Pauli equation in noncommutative phase-space. Ukr. J. Phys, 66(9) 2021, 771-779.
[15] I. Haouam, On the Fisk-Tait equation for spin-3/2 fermions interacting with an external magnetic field in noncommutative space-time. J. Phys. Stud, 24(1) 2020, 1801(1-10).
[16] I. Haouam, Dirac oscillator in dynamical noncommutative space. Acta. Polytech, 61(6) 2021, 689-702.
[17] I. Haouam, Analytical solution of (2+1) dimensional Dirac equation in time-dependent noncommutative phase-space. Acta. Polytech, 60(2) 2020, 111-121.
[18] I. Haouam, H. Hassanabadi, Exact solution of (2+1)-dimensional noncommutative Pauli equation in a time-dependent background. Int. J. Theor. Phys, 61 2022, 215(2-13).
[19] I. Haouam, A.S. Alavi, Dynamical noncommutative graphene. Int. J. Mod. Phys, A 37(10) 2022, 2250054(1-18).
[20] I. Haouam, On the three-dimensional Pauli equation in noncommutative phase-space. Acta Polytech, 61(1) 2021, 230-241.
[21] I. Haouam, Continuity equation in presence of a non-local potential in non-commutative phase-space. Open. J. Microphys, 9(3) 2019, 15-28.
[22] I. Haouam, Solutions of Noncommutative Two-Dimensional Position–Dependent Mass Dirac Equation in the Presence of Rashba Spin-Orbit Interaction by Using the Nikiforov–Uvarov Method. Int. J. Theor. Phys, 62 2023, 111(1-25).
[23] I. Haouam, The non-relativistic limit of the DKP equation in non-commutative phase-space. Symmetry, 11 2019, 223, 1-15.
[24] A.A. Hnilo, Simple Explanation of the Classical Limit. Found. Phys, 49 2019, 1365-1371.
[25] G.K. Kay, Exact wave functions from classical orbits. II. The Coulomb, Morse, Rosen-Morse, and Eckart systems. Phys. Rev. A, 65(3) 2002, 032101(1-23).
[26] H. Krüger, Classical limit of real Dirac theory: Quantization of relativistic central field orbits. Found. Phys, 23 1993, 1265-1288.
[27] L.M. Liang, B.H. Wu, Quantum and classical exact solutions of the time-dependent driven generalized harmonic oscillator. Phys. Scr, 68(1) 2003, 41-44.
[28] L.M. Liang, J.Y. Sun, Quantum-classical correspondence of the relativistic equations. Ann. Phys, 314(1) 2004, 1-9.
[29] L.M. Liang, L.S. Shu, B. Yan, Quantum-classical correspondence of the Dirac equation with a scalar-like potential. Pramana - J Phys, 72 2009, 777-785.
[30] J. Madore, An introduction to noncommutative geometry. In: H. Gausterer, L. Pittner, H. Grosse, (eds) Geometry and Quantum Physics. Lecture Notes in Physics. Springer, Berlin, Heidelberg, vol 543 2000.
[31] A.J. Makowski, Exact classical limit of quantum mechanics: Central potentials and specific states. Phys. Rev. A, 65(3) 2002, 032103, 1-5.
[32] P. Martinetti, Beyond the standard model with noncommutative geometry, strolling towards quantum gravity. IOP Publishing, 634 2015, 012001.
[33] N. Seiberg, E. Witten, String theory and noncommutative geometry. J. High. Energy. Phys, 1999(9) 1999, 0-32.
[34] H. Spohn, Semiclassical limit of the Dirac equation and spin precession. Ann. Phys, 282(2) 2000, 420-431.
[35] R.J. Szabo, Quantum field theory on noncommutative spaces. Phys. Rep, 378(4) 2003, 207-299.
[36] P.A. Tipler, L. Ralph. A. Modern Physics (5ed.). W. H. Freeman and Company, 160–161. ISBN 978-0-7167-7550-8, 2008.