Ehrenfest's theorem for the Dirac equation in noncommutative Phase-Space

Document Type : Original Article

Author

Laboratoire de Physique Mathématique et de Physique Subatomique (LPMPS), Université Frères Mentouri, Constantine 25000, Algeria.

Abstract

In this article, we investigate Ehrenfest's theorem from the Dirac equation in a noncommutative phase-space where we calculate the time derivative of the position and the kinetic momentum operators for Dirac particles in interaction with electromagnetic field and within a noncommutative setting. This allows examining the effect of the phase-space noncommutativity on Ehrenfest's theorem. Knowing that with both the linear Bopp-Shift and ⋆product, the noncommutativity is inserted.

Keywords

Main Subjects


[1] R. Alicki, Search for a border between classical and quantum worlds, Phys. Rev. A, 65(3) 2002, 034104(1-4).
[2] N. Bohr, Über die Serienspektra der Elemente. Z. Physik, 2 1920, 423-469.
[3] A.O. Bolivar. Classical limit of fermions in phase space. J. Math. Phys, 42(9) 2001, 4020-4030.
[4] M. Chaichian, M.M. Sheikh-Jabbari, A. Tureanu. Hydrogen Atom Spectrum and the Lamb Shift in Noncommutative QED. Phys. Rev. Lett, 86(13) 2001, 2716-2719.
[5] P. Ehrenfest, Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik. Z. Physik, 45 1927 455-457.
[6] G. Friesecke, M. Koppen. On the Ehrenfest theorem of quantum mechanics. J. Math. Phys, 50 2009, 082102(1-6).
[7] D.M. Gingrich. Noncommutative geometry inspired black holes in higher dimensions at the LHC. J. High. Energy. Phys, 2010(05) 2010, 0-22.
[8] L. Gouba. A comparative review of four formulations of noncommutative quantum mechanics. Int. J. Mod. Phys. A, 31(19) 2016, 1630025(1-15).
[9] J.M. Gracia-Bondia. Notes on Quantum Gravity and Noncommutative Geometry: New Paths Towards Quantum Gravity. Springer, Berlin, Heidelberg, 2010.
[10] R.W. Greenberg, A. Klein, C.T. Li. Invariant tori and Heisenberg matrix mechanics: a new window on the quantum-classical correspondence. Phys. Rep, 264(1-5) 1996, 167-181.
[11] I. Haouam, L. Chetouani, The Foldy-Wouthuysen transformation of the Dirac equation in noncommutative phase-space. J. Mod. Phys, 9 2018, 2021-2034.
[12] I. Haouam, Foldy–Wouthuysen Transformation of Noncommutative Dirac Equation in the Presence of Minimal Uncertainty in Momentum. Few-Body. Syst, 64 2023, 9(2-14).
[13] I. Haouam, On the noncommutative geometry in quantum mechanics. J. Phys. Stud, 24(2) 2020, 2002(1-10).
[14] I. Haouam, Two-dimensional Pauli equation in noncommutative phase-space. Ukr. J. Phys, 66(9) 2021, 771-779.
[15] I. Haouam, On the Fisk-Tait equation for spin-3/2 fermions interacting with an external magnetic field in noncommutative space-time. J. Phys. Stud, 24(1) 2020, 1801(1-10).
[16] I. Haouam, Dirac oscillator in dynamical noncommutative space. Acta. Polytech, 61(6) 2021, 689-702.
[17] I. Haouam, Analytical solution of (2+1) dimensional Dirac equation in time-dependent noncommutative phase-space. Acta. Polytech, 60(2) 2020, 111-121.
[18] I. Haouam, H. Hassanabadi, Exact solution of (2+1)-dimensional noncommutative Pauli equation in a time-dependent background. Int. J. Theor. Phys, 61 2022, 215(2-13).
[19] I. Haouam, A.S. Alavi, Dynamical noncommutative graphene. Int. J. Mod. Phys, A 37(10) 2022, 2250054(1-18).
[20] I. Haouam, On the three-dimensional Pauli equation in noncommutative phase-space. Acta Polytech, 61(1) 2021, 230-241.
[21] I. Haouam, Continuity equation in presence of a non-local potential in non-commutative phase-space. Open. J. Microphys, 9(3) 2019, 15-28.
[22] I. Haouam, Solutions of Noncommutative Two-Dimensional Position–Dependent Mass Dirac Equation in the Presence of Rashba Spin-Orbit Interaction by Using the Nikiforov–Uvarov Method. Int. J. Theor. Phys, 62 2023, 111(1-25).
[23] I. Haouam, The non-relativistic limit of the DKP equation in non-commutative phase-space. Symmetry, 11 2019, 223, 1-15.
[24] A.A. Hnilo, Simple Explanation of the Classical Limit. Found. Phys, 49 2019, 1365-1371.
[25] G.K. Kay, Exact wave functions from classical orbits. II. The Coulomb, Morse, Rosen-Morse, and Eckart systems. Phys. Rev. A, 65(3) 2002, 032101(1-23).
[26] H. Krüger, Classical limit of real Dirac theory: Quantization of relativistic central field orbits. Found. Phys, 23 1993, 1265-1288.
[27] L.M. Liang, B.H. Wu, Quantum and classical exact solutions of the time-dependent driven generalized harmonic oscillator. Phys. Scr, 68(1) 2003, 41-44.
[28] L.M. Liang, J.Y. Sun, Quantum-classical correspondence of the relativistic equations. Ann. Phys, 314(1) 2004, 1-9.
[29] L.M. Liang, L.S. Shu, B. Yan, Quantum-classical correspondence of the Dirac equation with a scalar-like potential. Pramana - J Phys, 72 2009, 777-785.
[30] J. Madore, An introduction to noncommutative geometry. In: H. Gausterer, L. Pittner, H. Grosse, (eds) Geometry and Quantum Physics. Lecture Notes in Physics. Springer, Berlin, Heidelberg, vol 543 2000.
[31] A.J. Makowski, Exact classical limit of quantum mechanics: Central potentials and specific states. Phys. Rev. A, 65(3) 2002, 032103, 1-5.
[32] P. Martinetti, Beyond the standard model with noncommutative geometry, strolling towards quantum gravity. IOP Publishing, 634 2015, 012001.
[33] N. Seiberg, E. Witten, String theory and noncommutative geometry. J. High. Energy. Phys, 1999(9) 1999, 0-32.
[34] H. Spohn, Semiclassical limit of the Dirac equation and spin precession. Ann. Phys, 282(2) 2000, 420-431.
[35] R.J. Szabo, Quantum field theory on noncommutative spaces. Phys. Rep, 378(4) 2003, 207-299.
[36] P.A. Tipler, L. Ralph. A. Modern Physics (5ed.). W. H. Freeman and Company, 160–161. ISBN 978-0-7167-7550-8, 2008.