[1] I. Ali, S. Haq, S.F. Aldosary, K.S. Nisar, F. Ahmad, Numerical solution of one- and twodimensional time-fractional burgers equation via lucas polynomials coupled with finite difference method, Alexandria Engineering Journal, 61, 2022, 6077-6087.
[2] J.M. Burgers, A Mathematical Model Illustrating the Theory of Turbulence, Adv. Appl. Mech. Academic Press, New York, 1948.
[3] C.F. Chen, C. Hsiao, Haar wavelet method for solving lumped and distributed-parameter systems, IEEE. Proc. Cont.Theo. Appl., 144 1997, 87-94.
[4] L. Chen, S. Lu, T. Xu, Fourier spectral approximation for time fractional burgers equation with non smooth solutions, Applied Numerical Mathematics, 169 2021, 164-178.
[5] Y. Chen, M. Yi, C. Yu, Error analysis for numerical solution of fractional differential equation by Haar wavelets method, J. Comput. Sci., 3 2012, 367-373.
[6] A. Duangpan, R. Boonklurb, and T. Treeyaprasert, Finite integration method with shifted chebyshev polynomials for solving time-fractional burgers’ equations, Mathematics, 7(12) 2019, 1201.
[7] M.S. Hashmi, M. Wajiha, S.W. Yao, A. Ghaffar, M. Inc, Cubic spline based differential quadrature method: A numerical approach for fractional burger equation, Results in Physics, 26(3) 2021, 104415.
[8] M.H. Heydari, Z. Avazzadeh, A. Atangana, Orthonormal shifted discrete legendre polynomials for solving a coupled system of nonlinear variable-order time fractional reaction-advection-diffusion equations, Applied Numerical Mathematics, 161 2021, 425-436.
[9] M.H. Heydari, Z. Avazzadeh, N. Hosseinzadeh, Haar wavelet method for solving high-order differential equations with multi-point boundary conditions, Journal of Applied and Computational Mechanics, 8(2) 2022, 528-544.
[10] M. Hussain, S. Haq, Weighted meshless spectral method for the solutions of multi-term time fractional advection-diffusion problems arising in heat and mass transfer, Int. J. Heat Mass Transf., 129, 2019, 1305-1316.
[11] M. Hussain, S. Haq, A. Ghafoor, I. Ali, Numerical solutions of time-fractional coupled viscous burgers’ equations using meshfree spectral method, Comput. Appl. Math., 39(1) 2020, 6.
[12] M. Kashif, K. D. Dwivedi, T. Som, Numerical solution of coupled type fractional order burgers equation using finite difference and fibonacci collocation method, Chinese Journal of Physics, 77 2022, 2314-2323.
[13] A.A. Kilbas, H. Srivastava, J. Trujillo, A Mathematical Model Illustrating the Theory of Turbulence, San Diego: Elsevier, 2006.
[14] C. Li, D. Li, Z. Wang, L1/ldg method for the generalized time-fractional burgers equation, Mathematics and Computers in Simulation, 187 2021, 357-378.
[15] Y. Li, W. Zhao, Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations, Appl. Math. Comput., 216, 2010, 2276-2285.
[16] J. Lund, K. Bowers, Sinc methods for quadrature and differential equations. SIAM, Philadelphia,1992.
[17] M. Onal, A. Esen, A crank-nicolson approximation for the time fractional burgers equation, Appl. Math. Nonlin. Sci., 5(2) 2020, 177-184.
[18] O. Oruc, A. Esen, F. Bulut, A unified finite difference chebyshev wavelet method for numerically solving time fractional burgers’ equation, Disc. Cont. Dyn. Syst., 12(3) 2019, 533-542.
[19] K. Parand, M. Dehghan, A. Pirkhedri, Sinc-collocation method for solving the blasius equation, Phy. Let. A., 373(4) 2009, 4060-4065.
[20] K. Parand, M. Dehghan, A. Pirkhedri, The Sinc-collocation method for solving the thomas-fermi equation, Appl. Math. Comput., 237(1) 2013, 244-252 .
[21] A. Pirkhedri ,H.H. S. Javadi, Solving the time-fractional diffusion equation via Sinc–Haar collocation method, Applied Mathematics and Computation, 257 2015, 317-325.
[22] M. Razzaghi, Y. Ordokhani, Solution of differential equations via rationalized Haar functions, Math. Comput. Simul., 56 2001, 235-246.
[23] B. K. Singh, M. Gupta, Trigonometric tension b-spline collocation approximations for time fractional burgers’ equation, Journal of Ocean Engineering and Science, In Press, 2022.
[24] F. Stenger, Integration formulas via the trapezoidal formula, J. Inst. Math. App., 12 1973, 103-114.
[25] V.K. Tamboli, P.V. Tandel, Solution of the time-fractional generalized burger–fisher equation using the fractional reduced differential transform method, Journal of Ocean Engineering and Science, 7(4) 2022, 399-407.
[26] D. Tavares, R. Almeida, D.F. Torres, Caputo derivatives of fractional variable order: Numerical approximations, communications in nonlinear science and numerical simulation, 35 2016, 69-87.
[27] A. Yokus, D. Kaya, Numerical and exact solutions for time fractional burgers equation, J. Nonlinear Sci. Appl, 10 2017, 3419-3428.